Citation: Wei HE, Jing XI, Tianpei HE, Na CHEN, Quan YUAN. Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364 shu

Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing

Figures(3)

  • As the global economy develops rapidly, the consumption of traditional fossil fuels has significantly increased, leading to a substantial emission of carbon dioxide (CO2), which has a noticeable impact on the natural ecosystem. In recent years, the third-generation green bio-manufacturing technology, driven by solar energy and using atmospheric CO2 as raw material, has gained widespread global attention. Over the past several years, researchers have conducted extensive studies in solar-driven inorganic semiconductor-microorganism hybrid systems, which have profound implications for CO2 fixation and bio-manufacturing. This review comprehensively examines how to construct high-performance inorganic semiconductor-microorganism hybrid systems by focusing on three dimensions: the optimization of inorganic semiconductor material structures and properties, the construction of inorganic semiconductor-microorganism interfaces, and the targeted reconstruction of microorganism metabolic pathways. Finally, this review outlines the developmental trends in the field of inorganic semiconductor-microorganism hybrid systems.
  • 加载中
    1. [1]

      LUO S S, LIN P P, NIEH L Y, LIAO G B, TANG P W, CHEN C, LIAO J C. A cell-free self-replenishing CO2-fixing system[J]. Nat. Catal., 2022, 5: 154-162  doi: 10.1038/s41929-022-00746-x

    2. [2]

      HU G P, LI Y, YE C, LIU L M, CHEN X L. Engineering microorganisms for enhanced CO2 sequestration[J]. Trends Biotechnol., 2019, 37: 532-547  doi: 10.1016/j.tibtech.2018.10.008

    3. [3]

      CAVICCHIOLI R, RIPPLE W J, TIMMIS K N, AZAM F, BAKKEN L R, BAYLIS M, BEHRENFELD M J, BOETIUS A, BOYD P W, CLASSEN A T, CROWTHER T W, DANOVARO R, FOREMAN C M, HUISMAN J, HUTCHINS D A, JANSSON J K, KARL D M, KOSKELLA B, WELCH D B M, MARTINY J B H, MORAN M A, ORPHAN V J, REAY D S, REMAIS J V, RICH V I, SINGH B K, STEIN L Y, STEWART F J, SULLIVAN M B, VAN OPPEN M J H, WEAVER S C, WEBB E A, WEBSTER N S. Scientists′ warning to humanity: Microorganisms and climate change[J]. Nat. Rev. Microbiol., 2019, 17: 569586

    4. [4]

      LI D Y, DONG H, CAO X P, WANG W Y, LI C. Enhancing photosynthetic CO2 fixation by assembling metal-organic frameworks on Chlorella pyrenoidosa[J]. Nat. Commun., 2023, 14: 5337  doi: 10.1038/s41467-023-40839-0

    5. [5]

      WANG Q, KALATHIL S, PORNRUNGROJ C, SAHM C D, REISNER E. Bacteria-photocatalyst sheet for sustainable carbon dioxide utilization[J]. Nat. Catal., 2022, 5: 633-641  doi: 10.1038/s41929-022-00817-z

    6. [6]

      CLAASSENS N J, SOUSA D Z, DOS SANTOS V A P M, DE VOS W M, VAN DER OOST J. Harnessing the power of microbial autotrophy[J]. Nat. Rev. Microbiol., 2016, 14: 692-706  doi: 10.1038/nrmicro.2016.130

    7. [7]

      FANG X, KALATHIL S, REISNER E. Semi-biological approaches to solar-to-chemical conversion[J]. Chem. Soc. Rev., 2020, 49: 4926-4952  doi: 10.1039/C9CS00496C

    8. [8]

      ZHENG T T, ZHANG M L, WU L H, GUO S Y, LIU X J, ZHAO J K, XUE W Q, LI J W, LIU C X, LI X, JIANG Q, BAO J, ZENG J, YU T, XIA C. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering[J]. Nat. Catal., 2022, 5: 388-396  doi: 10.1038/s41929-022-00775-6

    9. [9]

      ATSUMI S, HIGASHIDE W, LIAO J C. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde[J]. Nat. Biotechnol., 2009, 27: 12

    10. [10]

      ZHOU J, ZHANG F L, MENG H K, ZHANG Y P, LI Y. Introducing extra NADPH consumption ability significantly increases the photosynthetic efficiency and biomass production of cyanobacteria[J]. Metab. Eng., 2016, 38: 217-227  doi: 10.1016/j.ymben.2016.08.002

    11. [11]

      CHEN P F, LIU X, GU C H, ZHONG P Y, SONG N, LI M B, DAI Z Q, FANG X Q, LIU Z M, ZHANG J F, TANG R K, FAN S W, LIN X F. A plant-derived natural photosynthetic system for improving cell anabolism[J]. Nature, 2022, 612: 546-554  doi: 10.1038/s41586-022-05499-y

    12. [12]

      YU T, LIU Q L, WANG X, LIU X J, CHEN Y, NIELSEN J. Metabolic reconfiguration enables synthetic reductive metabolism in yeast[J]. Nat. Metab., 2022, 4: 1551-1559  doi: 10.1038/s42255-022-00654-1

    13. [13]

      WANG J, CHEN N, BIAN G K, MU X, DU N, WANG W J, MA C G, FU S, HUANG B L, LIU T G, YANG Y B, YUAN Q. Solar-driven overproduction of biofuels in microorganisms[J]. Angew. Chem. ‒Int. Edit., 2022, 61: e202207132  doi: 10.1002/anie.202207132

    14. [14]

      HU A D, FU T, REN G P, ZHUANG M H, YUAN W Q, ZHONG S N, ZHOU S G. Sustained biotic-abiotic hybrids methanogenesis enabled using metal-free black phosphorus/carbon nitride[J]. Front. Microbiol., 2022, 13: 957066  doi: 10.3389/fmicb.2022.957066

    15. [15]

      WU D, ZHANG W M, FU B H, ZHANG Z H. Living intracellular inorganic-microorganism biohybrid system for efficient solar hydrogen generation[J]. Joule, 2023, 6: 2293-2303

    16. [16]

      CESTELLOS-BLANCO S, ZHANG H, KIM J M, SHEN Y X, YANG P D. Photosynthetic semiconductor biohybrids for solar-driven biocatalysis[J]. Nat. Catal., 2020, 3: 245-255  doi: 10.1038/s41929-020-0428-y

    17. [17]

      WANG J, CHEN N, WANG W J, LI Z H, HUANG B L, YANG Y B, YUAN Q. Room-temperature persistent luminescence in metal halide perovskite nanocrystals for solar-driven CO2 bioreduction[J]. CCS Chem., 2023, 5: 164  doi: 10.31635/ccschem.022.202101694

    18. [18]

      LIN Y L, SHI J Y, FENG W, YUE J P, LUO Y Q, CHEN S, YANG B, JIANG Y W, HU H C, ZHOU C K, SHI F Y, PROMINSKI A, TALAPIN D V, XIONG W, GAO X, TIAN B. Periplasmic biomineralization for semi-artificial photosynthesis[J]. Sci. Adv., 2023, 9: eadg5858  doi: 10.1126/sciadv.adg5858

    19. [19]

      RODRIGUES R M, GUAN X, INIGUEZ J A, ESTABROOK D A, CHAPMAN J O, HUANG S Y, SLETTEN E M, LIU C. Perfluorocarbon nanoemulsion promotes the delivery of reducing equivalents for electricity-driven microbial CO2 reduction[J]. Nat. Catal., 2019, 2: 404-407

    20. [20]

      GUAN X, HU X C, ATALLAH T L, XIE Y C, LU S T, CAO B C, SUN J W, WU K, HUANG Y, DUAN X F, CARAM J R, YU Y, PARK J O, LIU C, ERSAN S. Maximizing light-driven CO2 and N2 fixation efficiency in quantum dot-bacteria hybrids[J]. Nat. Catal., 2022, 5: 1019-1029  doi: 10.1038/s41929-022-00867-3

    21. [21]

      GUO J L, SUASTEGUI M, SAKIMOTO K K, MOODY V M, XIAO G, NOCERA D G, JOSHI N S. Light‑driven fine chemical production in yeast biohybrids[J]. Science, 2018, 362: 813‑816  doi: 10.1126/science.aat9777

    22. [22]

      YE J, WANG C, GAO C, FU T, YANG C H, REN G P, LU J, ZHOU S G, XIONG Y J. Solar‑driven methanogenesis with ultrahigh selectivity by turning down H2 production at biotic-abiotic interface[J]. Nat. Commun., 2023, 13: 6612

    23. [23]

      CHEN N, DU N, SHEN R C, HE T P, XI J, TAN J, BIAN G K, YANG Y B, LIU T G, TAN W H, YU L L, YUAN Q. Redox signaling‑driven modulation of microbial biosynthesis and biocatalysis[J]. Nat. Commun., 2023, 14: 6800  doi: 10.1038/s41467-023-42561-3

    24. [24]

      CHENG J, XIA R X, LI H, CHEN Z, ZHOU X Y, REN X Y, DONG H Q, LIN R C, ZHOU J H. Enhancing extracellular electron transfer of Geobacter sulfurreducens in bioelectrochemical systems using N-doped Fe3O4@carbon dots[J]. ACS Sustain. Chem. Eng., 2022, 10(12): 3935-3950  doi: 10.1021/acssuschemeng.1c08167

    25. [25]

      YE J, REN G Y, KANG L, ZHANG Y Y, LIU X, ZHOU S G, HE Z. Efficient photoelectron capture by Ni decoration in Methanosarcina barkeri-CdS biohybrids for enhanced photocatalytic CO2-to-CH4 conversion[J]. iScience, 2020, 23(7): 101287  doi: 10.1016/j.isci.2020.101287

    26. [26]

      YE J, CHEN Y P, GAO C, WANG C, HU A D, DONG G W, CHEN Z, ZHOU S G, XIONG Y J. Sustainable conversion of microplastics to methane with ultrahigh selectivity by a biotic-abiotic hybrid photocatalytic system[J]. Angew. Chem. Int. Edit., 2022, 61(12): e202213244

    27. [27]

      WANG J, XUAN Y M, ZHANG K. Nickel doping as an effective strategy to promote separation of photogenerated charge carriers for efficient solar-fuel production[J]. Catal. Sci. Technol., 2021, 11: 4012-4015  doi: 10.1039/D1CY00483B

    28. [28]

      DING Y, BERTRAM J R, NAGPAL P. Utilizing atmospheric carbon dioxide and sunlight in graphene quantum dot-based nano-biohybrid organisms for making carbon negative and carbon-neutral products[J]. ACS Appl. Mater. Interfaces, 2023, 15: 53464-53475  doi: 10.1021/acsami.3c12524

    29. [29]

      HU A D, YE J, REN G P, QI Y, CHEN Y P, ZHOU S G. Metal-free semiconductor-based bio-nano hybrids for sustainable CO2-to-CH4 conversion with high quantum yield[J]. Angew. Chem. ‒Int. Edit., 2022, 61(35): e202206508  doi: 10.1002/anie.202206508

    30. [30]

      SALEH T A. Nanomaterials: Classification, properties, and environmental toxicities[J]. Environ. Technol. Innov., 2020, 20: 101067  doi: 10.1016/j.eti.2020.101067

    31. [31]

      LEAD J R, BATLEY G E, ALVAREZ P J J, CROTEAU M N, HANDY R D, MCLAUGHLIN M J, JUDY J D, SCHIRMER K. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects—An updated review[J]. Environ. Toxicol. Chem., 2018, 37(8): 2029-2063  doi: 10.1002/etc.4147

    32. [32]

      TANG Y A, HU J, YANG X L, XU H B. Biotoxicity of cadmium-based quantum dots and the mechanisms[J]. Prog. Chem., 2014, 26(10): 1731-1740

    33. [33]

      LI X M, CHEN N, SU Y Y, HE Y, FAN C H, HUANG Q. Cytotoxicity of cadmium-based quantum dots[J]. Chin. Sci. Bull., 2013, 58(15): 1393-1402

    34. [34]

      CHEN N, HE Y, SU Y Y, LI X M, HUANG Q, WANG H F, ZHANG X Z, TAI R Z, FAN C H. The cytotoxicity of cadmium-based quantum dots[J]. Biomaterials, 2012, 33(5): 1238-1244  doi: 10.1016/j.biomaterials.2011.10.070

    35. [35]

      LIU G Y, GAO F, ZHANG H W, WANG L, GAO C, XIONG Y J. Biosynthetic CdS-thiobacillus thioparus hybrid for solar-driven carbon dioxide fixation[J]. Nano Res., 2023, 16(4): 4531-4538  doi: 10.1007/s12274-021-3883-0

    36. [36]

      WANG B, JIANG Z, YU J C, WANG J, WONG P K. Enhanced CO2 reduction and valuable C2+ chemical production by a CdS-photosynthetic hybrid system[J]. Nanoscale, 2019, 11(19): 9296-9301  doi: 10.1039/C9NR02896J

    37. [37]

      JI X, ZHANG H, LIU H, YAGHI O M, YANG P D. Cytoprotective metal‑organic frameworks for anaerobic bacteria[J]. Proc. Natl. Acad. Sci. U. S. A., 2018, 115: 10682-10587

    38. [38]

      SAKIMOTO K K, KORNIENKO N, CESTELLOS-BLANCO S, LIM J, LIU C, YANG P D. Physical biology of the materials-microorganism interface[J]. J. Am. Chem. Soc., 2018, 140(6): 1978-1985  doi: 10.1021/jacs.7b11135

    39. [39]

      SHI L, DONG H L, REGUERA G, BEYENAL H, LU A H, LIU J, YU H Q, FREDRICKSON J K. Extracellular electron transfer mechanisms between microorganisms and minerals[J]. Nat. Rev. Microbiol., 2016, 14(10): 651-662  doi: 10.1038/nrmicro.2016.93

    40. [40]

      KORNIENKO N, SAKIMOTO K K, HERLIHY D M, NGUYEN S C, ALIVISATOS A P, HARRIS C B, SCHWARTZBERG A, YANG P D. Spectroscopic elucidation of energy transfer in hybrid inorganic-biological organisms for solar-to-chemical production[J]. Proc. Natl. Acad. Sci. U. S. A., 2016, 113(42): 11750-11755  doi: 10.1073/pnas.1610554113

    41. [41]

      FUKUSHIMA T, GUPTA S, RAD B, CORNEJO J A, PETZOLD C J, CHAN L J G, MIZRAHI R A, RALSTON C Y, AJO-FRANKLIN C M. The molecular basis for binding of an electron transfer protein to a metal oxide surface[J]. J. Am. Chem. Soc., 2017, 139(36): 12647-12654  doi: 10.1021/jacs.7b06560

    42. [42]

      TREMBLAY P L, ANGENENT L T, ZHANG T. Extracellular electron uptake: Among autotrophs and mediated by surfaces[J]. Trends Biotechnol., 2017, 35(4): 360-371  doi: 10.1016/j.tibtech.2016.10.004

    43. [43]

      LV X X, HUANG W C, GAO Y, CHEN R, CHEN X W, LIU D Q, WENG L, HE L C, LIU S Q. Boosting solar hydrogen production via electrostatic interaction mediated E. coli-TiO2-x biohybrid system[J]. Nano Res., 2024, 17: 5390-5398  doi: 10.1007/s12274-024-6432-9

    44. [44]

      XIA R X, CHENG J, CHEN Z, ZHANG Z, ZHOU X Y, ZHOU J H. Co‑NC@Co‑NP hierarchical nanoforest steering charge exchange efficiency at biotic‑abiotic interface for microbial electrochemical carbon reduction[J]. Sci. Total Environ., 2023, 904: 166793  doi: 10.1016/j.scitotenv.2023.166793

    45. [45]

      SU Y D, CESTELLOS-BLANCO S, KIM J M, SHEN Y X, KONG Q, LU D L, LIU C, ZHANG H, CAO Y H, YANG P D. Close-packed nanowire-bacteria hybrids for efficient solar-driven CO2 fixation[J]. Joule, 2020, 4(4): 800-811  doi: 10.1016/j.joule.2020.03.001

    46. [46]

      ZHANG H, LIU H, TIAN Z Q, LU D, YU Y, CESTELLOS-BLANCO S, SAKIMOTO K K, YANG P D. Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production[J]. Nat. Nanotechnol., 2018, 13(10): 900-905  doi: 10.1038/s41565-018-0267-z

    47. [47]

      WEN N, JIANG Q Q, CUI J T, ZHU H M, JI B T, LIU D Y. Intracellular InP quantum dots facilitate the conversion of carbon dioxide to value‑added chemicals in non-photosynthetic bacteria[J]. Nano Today, 2022, 47: 166793

    48. [48]

      LI D Y, YAO S Y, CAO X P, ZHANG Y J, WANG W Y, LI C. Enhancing cyanobacterial photosynthetic carbon fixation via quenching reactive oxygen species by intracellular gold nanoparticles[J]. ACS Sustain. Chem. Eng., 2023, 11(30): 11140-11148  doi: 10.1021/acssuschemeng.3c01559

    49. [49]

      SAKIMOTO K K, WONG A B, YANG P D. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J]. Science, 2016, 351(6268): 74-77  doi: 10.1126/science.aad3317

    50. [50]

      LUO B, WANG Y Z, LI D, SHEN H, XU L X, FANG Z, XIA Z, REN J, SHI W, YONG Y C. A periplasmic photosensitized biohybrid system for solar hydrogen production[J]. Adv. Energy Mater., 2021, 11(19): 2100256  doi: 10.1002/aenm.202100256

    51. [51]

      NIELSEN J, KEASLING J D. Engineering cellular metabolism[J]. Cell, 2016, 164(6): 1185-1197  doi: 10.1016/j.cell.2016.02.004

    52. [52]

      PI S S, YANG W J, FENG W, YANG R J, CHAO W X, CHENG W B, CUI L, LI Z D, LIN Y L, REN N Q. Solar-driven waste-to-chemical conversion by wastewater-derived semiconductor biohybrids[J]. Nat. Sustain., 2023, 6(12): 1673-1684  doi: 10.1038/s41893-023-01233-2

    53. [53]

      TU W M, XU J B, THOMPSON I P, HUANG W E. Engineering artificial photosynthesis based on rhodopsin for CO2 fixation[J]. Nat. Commun., 2023, 14(1): 8012  doi: 10.1038/s41467-023-43524-4

    54. [54]

      LI H, YU X X, QIN Y, JIANG T, WANG J J, CAI Z Q, XU J Y, GE Y, SUN H C, QI Z H. Synergistic approaches for enhanced light-driven hydrogen production: A membrane-anchoring protein-engineered biohybrid system with dual photosensitizers strategy[J]. ACS Mater. Lett., 2024, 6(4): 1418-1428  doi: 10.1021/acsmaterialslett.4c00063

    55. [55]

      HU G P, LI Z H, MA D L, YE C, ZHANG L P, GAO C, LIU L M, CHEN X L. Light-driven CO2 sequestration in Escherichia Coli to achieve theoretical yield of chemicals[J]. Nat. Catal., 2021, 4(5): 395-406  doi: 10.1038/s41929-021-00606-0

    56. [56]

      GAN Y M, CHAI T T, ZHANG J, GAO C, SONG W, WU J, LIU L M, CHEN X L. Light-driven CO2 utilization for chemical production in bacterium biohybrids[J]. Chin. J. Catal., 2024, 60: 294-303  doi: 10.1016/S1872-2067(23)64643-1

    57. [57]

      KIM J, CESTELLOS-BLANCO S, SHEN Y, CAI R, YANG P D. Enhancing biohybrid CO2 to multicarbon reduction via adapted whole-cell catalysts[J]. Nano Lett., 2022, 22(13): 5503-5509  doi: 10.1021/acs.nanolett.2c01576

    58. [58]

      GUAN X, XIE Y C, LIU C. Performance evaluation and multidisciplinary analysis of catalytic fixation reactions by material-microbe hybrids[J]. Nat. Catal., 2024, 7: 475-482  doi: 10.1038/s41929-024-01151-2

    59. [59]

      CHEN N, DU N, WANG W J, LIU T G, YUAN Q, YANG Y B. Real-time monitoring of dynamic microbial Fe􀃮 respiration metabolism with a living cell-compatible electron-sensing probe[J]. Angew. Chem. ‒Int. Edit., 2022, 61: e202115572  doi: 10.1002/anie.202115572

    60. [60]

      CHEN N, ZHANG X M, XI J, YANG Y B, YUAN Q. Recent advances of microbial metabolism analysis: From metabolic molecules to environments[J]. Sci. China Chem., 2023, 66: 2941

    61. [61]

      CHEN N, CHENG D, HE T P, YUAN Q. Real-time monitoring of dynamic chemical processes in microbial metabolism with optical sensor[J]. Chin. J. Chem., 2023, 41: 1836-1840  doi: 10.1002/cjoc.202200839

  • 加载中
    1. [1]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    2. [2]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    3. [3]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    4. [4]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    5. [5]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    6. [6]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    7. [7]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    8. [8]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    9. [9]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    10. [10]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    11. [11]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    12. [12]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    13. [13]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    14. [14]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    15. [15]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    16. [16]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    17. [17]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    20. [20]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

Metrics
  • PDF Downloads(14)
  • Abstract views(484)
  • HTML views(134)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return