Citation: Wenjie SHI, Fan LU, Mengwei CHEN, Jin WANG, Yingfeng HAN. Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360 shu

Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage

  • Corresponding author: Yingfeng HAN, yfhan@nwu.edu.cn
  • Received Date: 9 October 2024
    Revised Date: 21 November 2024

Figures(7)

  • An imidazolium-functionalized carboxylic acid ligand (H2L)Cl (1, 3-bis[4′-carboxy-3, 5-dimethyl-(1, 1′-biphenyl)-4-yl]-imidazolium chloride) was designed and synthesized. An imidazolium-functionalized zirconium metal-organic cage [(Cp3Zr3)2(L)3]Cl5 (MOC-1), where Cp3Zr3=(CpZr)3(μ3-O)(μ2-OH)3 and Cp=η5-C5H5, was prepared by the reaction of (H2L)Cl with bis(cyclopentadienyl)zirconium dichloride (Cp2ZrCl2). MOC-1 was characterized by single-crystal X-ray diffraction, 1H NMR, electrospray ionization-mass spectrometry, UV-Vis absorption spectrum, IR spectroscopy, thermogravimetric analysis, and other test methods. Single-crystal X-ray diffraction analysis demonstrates the cationic skeleton of MOC-1 consists of two Cp3Zr3 units and three L- ligands. The three imidazole groups are located in the middle of the cage and point towards the inside. MOC-1 exhibits a cavity in an irregular pentagonal bipyramidal shape. The host-guest properties between MOC-1 and aryl sulfonate anions of different sizes were studied by 1H NMR. The results show that the host-guest interaction between MOC-1 and G1-G3 (benzenesulfonate, p-chlorophenyl sulfonate, and p-methyl benzenesulfonate, respectively) with better cavity matching was stronger than that between the larger aryl sulfonate anions G4 (p-ethyl benzenesulfonate) and G5 (p-isopropyl benzenesulfonate).
  • 加载中
    1. [1]

      McCONNELL A J, WOOD C S, NEELAKANDAN P P, NITSCHKE J R. Stimuli-responsive metal-ligand assemblies[J]. Chem. Rev., 2015, 115(15): 7729-7793  doi: 10.1021/cr500632f

    2. [2]

      SAHA M L, YAN X Z, STANG P J. Photophysical properties of organoplatinum(Ⅱ) compounds and derived self-assembled metallacycles and metallacages: fluorescence and its applications[J]. Acc. Chem. Res., 2016, 49(11): 2527-2539  doi: 10.1021/acs.accounts.6b00416

    3. [3]

      ZHANG Z Y, ZHAO Z Q, WU L W, LU S, LING S L, LI G P, XU L T, MA L Z, HOU Y L, WANG X C, LI X P, HE G, WANG K, ZOU B, ZHANG M M. Emissive platinum(Ⅱ) cages with reverse fluorescence resonance energy transfer for multiple sensing[J]. J. Am. Chem. Soc., 2020, 142(5): 2592-2600  doi: 10.1021/jacs.9b12689

    4. [4]

      NIU X F, WANG K, SONG F Y, YU S Y. Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-[J]. Chinese J. Inorg. Chem., 2024, 40(7): 1233-1242
       

    5. [5]

      FANG Y, POWELL J A, LI E, WANG Q, PERRY Z, KIRCHON A, YANG X Y, XIAO Z F, ZHU C F, ZHANG L L, HUANG F H, ZHOU H C. Catalytic reactions within the cavity of coordination cages[J]. Chem. Soc. Rev., 2019, 48(17): 4707-4730  doi: 10.1039/C9CS00091G

    6. [6]

      BROWN C J, TOSTE F D, BERGMAN R G, RAYMOND K N. Supramolecular catalysis in metal-ligand cluster hosts[J]. Chem. Rev., 2015, 115(9): 3012-3035  doi: 10.1021/cr4001226

    7. [7]

      KAPHAN D M, LEVIN M D, BERGMAN R G, RAYMOND K N, TOSTE F D. A supramolecular microenvironment strategy for transition metal catalysis[J]. Science, 2015, 350(6265): 1235-1238  doi: 10.1126/science.aad3087

    8. [8]

      BOALER P J, PISKORZ T K, BICKERTON L E, WANG J Z, DUARTE F, LLOYD-JONES G C, LUSBY P J. Origins of high-activity cage-catalyzed Michael addition[J]. J. Am. Chem. Soc., 2024, 146(28): 19317-19326  doi: 10.1021/jacs.4c05160

    9. [9]

      AMOURI H, DESMARETS C, MOUSSA J. Confined nanospaces in metallocages: Guest molecules, weakly encapsulated anions, and catalyst sequestration[J]. Chem. Rev., 2012, 112(4): 2015-2041  doi: 10.1021/cr200345v

    10. [10]

      WANG L J, BAI S, HAN Y F. Water-soluble self-assembled cage with triangular metal-metal-bonded units enabling the sequential selective separation of alkanes and isomeric molecules[J]. J. Am. Chem. Soc., 2022, 144(35): 16191-16198  doi: 10.1021/jacs.2c07586

    11. [11]

      WANG L J, ZHANG Z E, ZHANG Y Z, HAN Y F. Cavity-partitioned self-assembled cage for sequential separation in aqueous solutions[J]. Angew. Chem. ‒Int. Edit., 2024: e202407278  doi: 10.1002/anie.202407278

    12. [12]

      ZHENG Y R, SUNTHARALINGAM K, JOHNSTONE T C, LIPPARD S J. Encapsulation of Pt(Ⅳ) prodrugs within a Pt(Ⅱ) cage for drug delivery[J]. Chem. Sci., 2015, 6(2): 1189-1193  doi: 10.1039/C4SC01892C

    13. [13]

      Wang Y P, Zhang Y, Duan X H, Mao J J, Pan M, Shen J, Su C Y. Recent progress in metal-organic cages for biomedical application: Highlighted research during 2018-2023[J]. Coord. Chem. Rev., 2024, 501: 215570  doi: 10.1016/j.ccr.2023.215570

    14. [14]

      SHIRINFAR B, AHMED N, PARK Y S, CHO G S, YOUN I S, HAN J K, NAM H G, KIM K S. Selective fluorescent detection of RNA in living cells by using imidazolium-based cyclophane[J]. J. Am. Chem. Soc., 2013, 135(1): 90-93  doi: 10.1021/ja3112274

    15. [15]

      KUMAR R, SANDHU S, SINGH P, KUMAR S. Imidazolium based probes for recognition of biologically and medically relevant anions[J]. Chem. Rec., 2017, 17(4): 441-471  doi: 10.1002/tcr.201600108

    16. [16]

      XU Z C, KIM S K, YOON J. Revisit to imidazolium receptors for the recognition of anions: Highlighted research during 2006—2009[J]. Chem. Soc. Rev., 2010, 39(5): 1457-1466  doi: 10.1039/b918937h

    17. [17]

      HU Y, LONG S S, FU H Y, SHE Y B, XU Z C, YOON J. Revisiting imidazolium receptors for the recognition of anions: Highlighted research during 2010—2019[J]. Chem. Soc. Rev., 2021, 50(1): 589-618  doi: 10.1039/D0CS00642D

    18. [18]

      LIU T, BAI S, ZHANG L, HAHN F E, HAN Y F. N-heterocyclic carbene-stabilized metal nanoparticles within porous organic cages for catalytic application[J]. Natl. Sci. Rev., 2022, 9: nwac067  doi: 10.1093/nsr/nwac067

    19. [19]

      WANG Y S, BAI S, WANG Y Y, HAN Y F. Controllable synthesis of polyimidazolium macrocycles based on metal-N-heterocyclic carbene templates[J]. Chinese J. Inorg. Chem., 2024, 40(1): 221-231
       

    20. [20]

      LIU G L, YUAN Y D, WANG J, CHENG Y D, PEH S B, WANG Y X, QIAN Y H, DONG J Q, YUAN D Q, ZHAO D. Process-tracing study on the postassembly modification of highly stable zirconium metal-organic cages[J]. J. Am. Chem. Soc., 2018, 140(20): 6231-6234  doi: 10.1021/jacs.8b03517

    21. [21]

      SULLIVAN M G, WELGAMA H K, CRAWLEY M R, FRIEDMAN A E, COOK T R. Phase-pure zirconium metal-organic polyhedra enabled by a ligand substitution strategy[J]. Chem. Mater., 2024, 36: 567-574  doi: 10.1021/acs.chemmater.3c02775

    22. [22]

      CHEN C X, RABAÂ H, WANG H P, LAN P C, XIONG Y Y, WEI Z W, AL-ENIZI A M, NAFADY A, MA S Q. In situ formation of frustrated Lewis pairs in a zirconium metal-organic cage for sustainable CO2 chemical fixation[J]. CCS Chem., 2023, 5(9): 1989-1998  doi: 10.31635/ccschem.023.202302856

    23. [23]

      KIM J, NAM D, KITAGAWA H, LIM D W, CHOE W. Discovery of Zr-based metal-organic polygon: Unveiling new design opportunities in reticular chemistry[J]. Nano Res., 2020, 14(2): 392-397

    24. [24]

      TAO Y L, CHEN W C, WANG X L, SU Z M. Synthesis, crystal structures and fluorescence properties of two nanosized Zr-based molecular capsules[J]. Chinese J. Inorg. Chem., 2019, 35(11): 2108-2116  doi: 10.11862/CJIC.2019.224

    25. [25]

      JU Z F, LIU G L, CHEN Y S, YUAN D Q, CHEN B L. From coordination cages to a stable crystalline porous hydrogen-bonded framework[J]. Chem. ‒Eur. J., 2017, 23(20): 4774-4777  doi: 10.1002/chem.201700798

    26. [26]

      SHI W J, LIU D, LI X, BAI S, WANG Y Y, HAN Y F. Supramolecular coordination cages based on N-heterocyclic carbene-gold􀃬 ligands and their precursors: Self-assembly, structural transformation and guest-binding properties[J]. Chem. ‒Eur. J., 2021, 27(29): 7853-7861  doi: 10.1002/chem.202100710

    27. [27]

      YANG D H, LI S Z, MA P T, WANG J P, NIU J Y. Carboxylate-functionalized phosphomolybdates: Ligand-directed conformations[J]. Inorg. Chem., 2013, 52(15): 8987-8992  doi: 10.1021/ic401176j

    28. [28]

      ZHANG Y T, ZHU J, LIU Z Y, LI S B, HUANG H, JIANG B X. Microwave-assisted synthesis of Zr-based metal-organic polyhedron: Serving as efficient visible-light photocatalyst for Cr􀃱 reduction[J]. Inorg. Chim. Acta, 2022, 543: 121204  doi: 10.1016/j.ica.2022.121204

    29. [29]

      ZHAO X, CUI H Y, GUO L L, LI B, LI J, JIA X S, LI C J. General and modular synthesis of covalent organic cages for efficient molecular recognition[J]. Angew. Chem. ‒Int. Edit., 2024: e202411613

  • 加载中
    1. [1]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    2. [2]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    3. [3]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    4. [4]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    5. [5]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    6. [6]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    7. [7]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    8. [8]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    9. [9]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    10. [10]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    11. [11]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    12. [12]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    13. [13]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    14. [14]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    15. [15]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    17. [17]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    18. [18]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    19. [19]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    20. [20]

      Ling Zhang Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075

Metrics
  • PDF Downloads(8)
  • Abstract views(456)
  • HTML views(97)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return