Citation: Rui HUANG, Shengjie LIU, Qingyuan WU, Nanfeng ZHENG. Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356 shu

Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects

Figures(5)

  • The highly selective catalytic hydrogenation of halogenated nitroaromatics was achieved by employing Pd-based catalysts that were co-modified with organic and inorganic ligands. It was demonstrated that the catalysts contained Pd species in mixed valence states, with high valence Pd at the metal-support interface and zero valence Pd at the metal surface. While the strong coordination of triphenylphosphine (PPh3) to Pd0 on the Pd surface prevents the adsorption of halogenated nitroaromatics and thus dehalogenation, the coordination of sodium metavanadate (NaVO3) to high-valence Pd sites at the interface helps to activate H2 in a heterolytic pathway for the selective hydrogenation of nitro-groups. The excellent catalytic performance of the interfacial active sites enables the selective hydrogenation of a wide range of halogenated nitroaromatics.
  • 加载中
    1. [1]

      CORMA A, SERNA P, CONCEPCIóN P, CALVINO J J. Transforming nonselective into chemoselective metal catalysts for the hydrogenation of substituted nitroaromatics[J]. J. Am. Chem. Soc., 2008,130(27):8748-8753. doi: 10.1021/ja800959g

    2. [2]

      WU Q Y, SU W, HUANG R, SHEN H, QIAO M F, QIN R X, ZHENG N F. Full selectivity control over the catalytic hydrogenation of nitroaromatics into six products[J]. Angew. Chem.‒Int. Edit., 2024,63(38)e202408731. doi: 10.1002/anie.202408731

    3. [3]

      SERNA P, CORMA A. Transforming nano metal nonselective particulates into chemoselective catalysts for hydrogenation of substituted nitrobenzenes[J]. ACS Catal., 2015,5(12):7114-7121. doi: 10.1021/acscatal.5b01846

    4. [4]

      SUN X L, WANG Y C, WU Q Y, HAN Y Z, GONG X K, TANG X K, AIKENS C M, SHEN H, ZHENG N F. Cu66 nanoclusters from hierarchical square motifs: Synthesis, assembly, and catalysis[J]. Aggregate, 2024e651. doi: 10.1002/agt2.651

    5. [5]

      BLASER H U, STEINER H, STUDER M. Selective catalytic hydrogenation of functionalized nitroarenes: An update[J]. ChemCatChem, 2009,1(2):210-221. doi: 10.1002/cctc.200900129

    6. [6]

      LI K J, QIN R X, LIU K L, ZHOU W T, LIU N, ZHANG Y Z, LIU S J, CHEN J, FU G, ZHENG N F. Carbon deposition on heterogeneous Pt catalysts promotes the selective hydrogenation of halogenated nitroaromatics[J]. ACS Appl. Mater. Interfaces, 2021,13(44):52193-52201. doi: 10.1021/acsami.1c11548

    7. [7]

      FORMENTI D, FERRETTI F, SCHARNAGL F K, BELLER M. Reduction of nitro compounds using 3d-non-noble metal catalysts[J]. Chem. Rev., 2019,119(4):2611-2680. doi: 10.1021/acs.chemrev.8b00547

    8. [8]

      SHEN H, WU Q Y, MALOLA S, HAN Y Z, XU Z, QIN R X, TANG X K, CHEN Y B, TEO B K, HÄKKINEN H, ZHENG N F. N-heterocyclic carbene-stabilized gold nanoclusters with organometallic motifs for promoting catalysis[J]. J. Am. Chem. Soc., 2022,144(24):10844-10853. doi: 10.1021/jacs.2c02669

    9. [9]

      MITCHELL S, QIN R X, ZHENG N F, PEREZ-RAMIREZ J. Nanoscale engineering of catalytic materials for sustainable technologies[J]. Nat. Nanotechnol., 2021,16(2):129-139. doi: 10.1038/s41565-020-00799-8

    10. [10]

      QIN R X, LIU K L, WU Q Y, ZHENG N F. Surface coordination chemistry of atomically dispersed metal catalysts[J]. Chem. Rev., 2020,120(21):11810-11899. doi: 10.1021/acs.chemrev.0c00094

    11. [11]

      GUO M, LI H, REN Y Q, REN X M, YANG Q H, LI C. Improving catalytic hydrogenation performance of Pd nanoparticles by electronic modulation using phosphine ligands[J]. ACS Catal., 2018,8(7):6476-6485. doi: 10.1021/acscatal.8b00872

    12. [12]

      MAKOSCH M, LIN W I, BUMBáLEK V, Sá J, MEDLIN J W, HUNGERBüHLER K, VAN BOKHOVEN J A. Organic thiol modified Pt/TiO2 catalysts to control chemoselective hydrogenation of substituted nitroarenes[J]. ACS Catal., 2012,2(10):2079-2081. doi: 10.1021/cs300378p

    13. [13]

      ZHAO X J, ZHOU L Y, ZHANG W Y, HU C Y, DAI L, REN L T, WU B H, FU G, ZHENG N F. Thiol treatment creates selective palladium catalysts for semihydrogenation of internal alkynes[J]. Chem, 2018,4(5):1080-1091. doi: 10.1016/j.chempr.2018.02.011

    14. [14]

      WU Q Y, ZHOU W T, SHEN H, QIN R X, HONG Q M, YI X D, ZHENG N F. Surface coordination decouples hydrogenation catalysis on supported metal catalysts[J]. CCS Chem., 2022,5(5):1215-1224.

    15. [15]

      WANG W, XU W L, THAPA K B, YANG X R, LIANG J H, ZHU L Y, ZHU J L. Morpholine-modified Pd/γ-Al2O3@ASMA pellet catalyst with excellent catalytic selectivity in the hydrogenation of p-chloronitrobenzene to p-chloroaniline[J]. Catalysts, 2017,7(10)292. doi: 10.3390/catal7100292

    16. [16]

      MARSHALL S T, O'BRIEN M, OETTER B, CORPUZ A, RICHARDS R M, SCHWARTZ D K, MEDLIN J W. Controlled selectivity for palladium catalysts using self-assembled monolayers[J]. Nat. Mater., 2010,9(10):853-858. doi: 10.1038/nmat2849

    17. [17]

      SCHOENBAUM C A, SCHWARTZ D K, MEDLIN J W. Controlling the surface environment of heterogeneous catalysts using self-assembled monolayers[J]. Acc. Chem. Res., 2014,47(4):1438-1445. doi: 10.1021/ar500029y

    18. [18]

      WU B H, HUANG H Q, YANG J, ZHENG N F, FU G. Selective hydrogenation of α, β-unsaturated aldehydes catalyzed by amine-capped platinum-cobalt nanocrystals[J]. Angew. Chem.‒Int. Edit., 2012,51(14):3440-3443. doi: 10.1002/anie.201108593

    19. [19]

      RUAN P P, CHEN B L, ZHOU Q, ZHANG H S, WANG Y H, LIU K L, ZHOU W T, QIN R X, LIU Z, FU G, ZHENG N F. Upgrading heterogeneous Ni catalysts with thiol modification[J]. The Innovation, 2023,4(1)100362. doi: 10.1016/j.xinn.2022.100362

    20. [20]

      LU L F, ZOU S H, FANG B Z. The critical impacts of ligands on heterogeneous nanocatalysis: A review[J]. ACS Catal., 2021,11(10):6020-6058. doi: 10.1021/acscatal.1c00903

    21. [21]

      CARGNELLO M, CHEN C, DIROLL B T, DOAN-NGUYEN V V, GORTE R J, MURRAY C B. Efficient removal of organic ligands from supported nanocrystals by fast thermal annealing enables catalytic studies on well-defined active phases[J]. J. Am. Chem. Soc., 2015,137(21):6906-6911. doi: 10.1021/jacs.5b03333

    22. [22]

      BAUMEISTER P, BLASER H U, STUDER M. Strong reduction of hydroxylamine accumulation in the catalytic hydrogenation of nitroarenes by vanadium promoters[J]. Catal. Lett., 1997,49:219-222. doi: 10.1023/A:1019034128024

    23. [23]

      STUDER M, NETO S, BLASER H U. Modulating the hydroxylamine accumulation in the hydrogenation of substituted nitroarenes using vanadium-promoted RNi catalysts[J]. Top. Catal., 2000,13:205-212. doi: 10.1023/A:1009050804228

    24. [24]

      ZHANG L, WANG L, JIANG Z Y, XIE Z X. Synthesis of size-controlled monodisperse Pd nanoparticles via a non-aqueous seed-mediated growth[J]. Nanoscale Res. Lett., 2012,7312. doi: 10.1186/1556-276X-7-312

    25. [25]

      ZHANG J, WANG L, SHAO Y, WANG Y Q, GATES B C, XIAO F S. A Pd@zeolite catalyst for nitroarene hydrogenation with high product selectivity by sterically controlled adsorption in the zeolite micropores[J]. Angew. Chem.‒Int. Edit., 2017,56(33):9747-9751. doi: 10.1002/anie.201703938

    26. [26]

      LIU P X, ZHAO Y, QIN R X, MO S G, CHEN G X, GU L, CHEVRIER D M, ZHANG P, GUO Q, ZANG D D, WU B H, FU G, ZHENG N F. Photochemical route for synthesizing atomically dispersed palladium catalysts[J]. Science, 2016,352(6287):797-801. doi: 10.1126/science.aaf5251

    27. [27]

      SCHALOW T, BRANDT B, STARR D E, LAURIN M, SHAIKHUTDINOV S K, SCHAUERMANN S, LIBUDA J, FREUND H J. Size-dependent oxidation mechanism of supported Pd nanoparticles[J]. Angew. Chem.‒Int. Edit., 2006,45(22):3693-3697. doi: 10.1002/anie.200504253

    28. [28]

      YOU P Y, ZHAN S Q, RUAN P P, QIN R X, MO S G, ZHANG Y Z, LIU K L, ZHENG L S, ZHENG N F. Interfacial oxidized Pd species dominate catalytic hydrogenation of polar unsaturated bonds[J]. Nano Res., 2024,17:228-234. doi: 10.1007/s12274-023-5538-9

    29. [29]

      CHEN G X, ZHAO Y, FU G, DUCHESNE P N, GU L, ZHENG Y P, WENG X F, CHEN M S, ZHANG P, PAO C W, LEE J F, ZHENG N F. Interfacial effects in iron-nickel hydroxide-platinum nanoparticles enhance catalytic oxidation[J]. Science, 2014,344(6183):495-499. doi: 10.1126/science.1252553

    30. [30]

      ZHANG W Y, QIN Q, DAI L, QIN R X, ZHAO X J, CHEN X M, OU D H, CHEN J, CHUONG T T, WU B H, ZHENG N F. Electrochemical reduction of carbon dioxide to methanol on hierarchical Pd/SnO2 nanosheets with abundant Pd-O-Sn interfaces[J]. Angew. Chem.‒Int. Edit., 2018,57(30):9475-9479. doi: 10.1002/anie.201804142

    31. [31]

      WANG Y, QIN R X, WANG Y K, REN J, ZHOU W T, LI L Y, MING J, ZHANG W Y, FU G, ZHENG N F. Chemoselective hydrogenation of nitroaromatics at the nanoscale iron(Ⅲ)-OH-platinum interface[J]. Angew. Chem.‒Int. Edit.., 2020,59(31):12736-12740. doi: 10.1002/anie.202003651

    32. [32]

      WU Q Y, QIN R X, ZANG D D, ZHANG W Y, WU B H, ZHENG N F. Stabilizing catalytic Pt-OH-Fe(Ⅲ) interfaces by mesoporous TiO2 with rich surface hydroxyl groups[J]. Acta Chim. Sin., 2018,76(8):617-621.

    33. [33]

      HE Y F. Morphology of vanadium(Ⅴ) and (Ⅳ) in water and vanadium(Ⅳ) complexes[J]. Chemical Engineering of Oil & Gas, 1983(3):5-13.

    34. [34]

      SCHOISWOHL J, SURNEV S, NETZER F P, KRESSE G. Vanadium oxide nanostructures: From zero- to three-dimensional[J]. J. Phys.: Condens. Matter, 2006,18:R1-R14. doi: 10.1088/0953-8984/18/4/R01

    35. [35]

      WU Q Y, QIN R X, ZHU M S, SHEN H, YU S S, ZHONG Y Y, FU G, YI X D, ZHENG N F. Frustrated Lewis pairs on pentacoordinated Al3+-enriched Al2O3 promote heterolytic hydrogen activation and hydrogenation[J]. Chem. Sci., 2024,15(9):3140-3147. doi: 10.1039/D3SC06425E

    36. [36]

      SHEN H, WU Q Y, HAZER M S, TANG X K, HAN Y Z, QIN R X, MA C X, MALOLA S, TEO B K, HÄKKINEN H, ZHENG N F. Regioselective hydrogenation of alkenes over atomically dispersed Pd sites on NHC-stabilized bimetallic nanoclusters[J]. Chem, 2022,8(9):2380-2392. doi: 10.1016/j.chempr.2022.04.017

  • 加载中
    1. [1]

      Shaoming DongYiming NiuYinghui PuYongzhao WangBingsen Zhang . Subsurface carbon modification of Ni-Ga for improved selectivity in acetylene hydrogenation reaction. Chinese Chemical Letters, 2024, 35(12): 109525-. doi: 10.1016/j.cclet.2024.109525

    2. [2]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    3. [3]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    4. [4]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    5. [5]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    6. [6]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    7. [7]

      Dongmei YaoJunsheng ZhengLiming JinXiaomin MengZize ZhanRunlin FanCong FengPingwen Ming . Effect of surface oxidation on the interfacial and mechanical properties in graphite/epoxy composites composite bipolar plates. Chinese Chemical Letters, 2024, 35(11): 109382-. doi: 10.1016/j.cclet.2023.109382

    8. [8]

      Jianing HeXiao WangZijian WangRuize JiangKe WangRui ZhangHuilin WangBaokang GengHongyi GaoShuyan SongHongjie Zhang . Investigation on Cu promotion effect on Ce-based solid solution-anchored Rh single atoms for three-way catalysis. Chinese Chemical Letters, 2025, 36(2): 109640-. doi: 10.1016/j.cclet.2024.109640

    9. [9]

      Minghui ZhangNa ZhangQian ZhaoChao WangAlexander SteinerJianliang XiaoWeijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081

    10. [10]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    11. [11]

      Jinyuan Cui Tingting Yang Teng Xu Jin Lin Kunlong Liu Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438

    12. [12]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    13. [13]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    14. [14]

      Ruixue LiuXiaobing DingQiwei LangGen-Qiang ChenXumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037

    15. [15]

      Zhongjie LiXiangyue KongYuhao LiuHuayu QiuLingling ZhanShouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378

    16. [16]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    17. [17]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    18. [18]

      Lin Zhang Chaoran Li Thongthai Witoon Xingda An Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456

    19. [19]

      Huangjie Lu Yingzhe Du Peng Lin Jian Lin . Separation of americium from lanthanides based on oxidation state control. Chinese Journal of Structural Chemistry, 2024, 43(10): 100344-100344. doi: 10.1016/j.cjsc.2024.100344

    20. [20]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

Metrics
  • PDF Downloads(20)
  • Abstract views(434)
  • HTML views(68)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return