Citation: Mengzhen JIANG, Qian WANG, Junfeng BAI. Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355 shu

Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas

Figures(9)

  • Using efficient and green materials to capture carbon dioxide will be beneficial to reducing artificial emissions of carbon dioxide into the atmosphere. The design and synthesis of high-performance metal-organic frameworks (MOFs) for capturing carbon dioxide from flue gas has entered a new stage driven by the application. Developing MOFs for carbon dioxide capture with superior comprehensive performance is challenging. This review focuses on the current research on such MOFs with low-cost ligands. Furthermore, their structures, water/thermal/chemical stability, adsorption capacity and selectivity, adsorption behaviors affected by moisture, multi-cycle usability, regeneration, and macroscopic preparation were discussed.
  • 加载中
    1. [1]

      LIU Z C, YI X D, GAO F X, XIE Z K, HAN B X, SUN Y H, HE M Y, YANG J L. Green carbon science: a scientific basis for achieving 'dual carbon' goal—academic summary of the 292nd "shuang⁃qing forum"[J]. Acta Phys. ‒Chim. Sin., 2023, 39(1): 2112029

    2. [2]

      SUMIDA K, ROGOW D L, MASON J A, MCDONALD T M, BLOCH E D, HERM Z R, BAE T H, LONG J R. Carbon dioxide capture in metal⁃organic frameworks[J]. Chem. Rev., 2012, 112(2): 724⁃781  doi: 10.1021/cr2003272

    3. [3]

      D′ALESSANDRO D M, SMIT B, LONG J R. Carbon dioxide capture: prospects for new materials[J]. Angew. Chem. ‒Int. Edit., 2010, 49(35): 6058⁃6082  doi: 10.1002/anie.201000431

    4. [4]

      KALMUTZKI M J, HANIKEL N, YAGHI O M. Secondary building units as the turning point in the development of the reticular chemistry of MOFs[J]. Sci. Adv., 2018, 4: eaat9180  doi: 10.1126/sciadv.aat9180

    5. [5]

      FAN W D, ZHANG X R, KANG Z X, LIU X P, SUN D F. Isoreticular chemistry within metal⁃organic frameworks for gas storage and separation[J]. Coord. Chem. Rev., 2021, 440: 213968

    6. [6]

      FREUND R, CANOSSA S, COHEN S M, YAN W, DENG H X, GUILLERM V, EDDAOUDI M, MADDEN D G, FAIREN⁃JIMENEZ D, LYU H, MACREADIE L K, JI Z, ZHANG Y Y, WANG B, HAASE F, WÖLL C, ZAREMBA O, ANDREO J, WUTTKE S, DIERCKS C S. 25 years of reticular chemistry[J]. Angew. Chem. ‒Int. Edit., 2021, 60(45): 23946⁃23974  doi: 10.1002/anie.202101644

    7. [7]

      FURUKAWA H, CORDOVA K E, O′KEEFFE M, YAGHI O M. The chemistry and applications of metal⁃organic frameworks[J]. Science, 2013, 341: 1230444  doi: 10.1126/science.1230444

    8. [8]

      KITAGAWA S. Porous crystalline materials: Closing remarks[J]. Faraday Discuss., 2017, 201: 395⁃404  doi: 10.1039/C7FD90042B

    9. [9]

      RUNGTAWEEVORANIT B, DIERCKS C S, KALMUTZKI M J, YAGHI O M. Spiers memorial lecture: Progress and prospects of reticular chemistry[J]. Faraday Discuss., 2017, 201: 9⁃45  doi: 10.1039/C7FD00160F

    10. [10]

      DU L T, LU Z Y, ZHENG K Y, WANG J Y, ZHENG X, PAN Y, YOU X Z, BAI J F. Fine⁃tuning pore size by shifting coordination sites of ligands and surface polarization of metal⁃organic frameworks to sharply enhance the selectivity for CO2[J]. J. Am. Chem. Soc., 2013, 135(2): 562⁃565  doi: 10.1021/ja309992a

    11. [11]

      LI J T, BHATT P M, LI J Y, EDDAOUDI M, LIU Y L. Recent progress on microfine design of metal⁃organic frameworks: Structure regulation and gas sorption and separation[J]. Adv. Mater., 2020, 32(44): 2002563  doi: 10.1002/adma.202002563

    12. [12]

      MASOOMI M Y, MORSALI A, DHAKSHINAMOORTHY A, GARCIA H. Mixed⁃metal MOFs: Unique opportunities in metal⁃organic framework (MOF) functionality and design[J]. Angew. Chem. ‒Int. Edit., 2019, 131: 15330⁃15347  doi: 10.1002/ange.201902229

    13. [13]

      BHATT P M, GUILLERM V, DATTA S J, SHKURENKO A, EDDAOUDI M. Topology meets reticular chemistry for chemical separations: MOFs as a case study[J]. Chem, 2020, 6(7): 1613⁃1633  doi: 10.1016/j.chempr.2020.06.018

    14. [14]

      PANG Q Q, TU B B, LI Q W. Metal⁃organic frameworks with multicomponents in order[J]. Coord. Chem. Rev., 2019, 388: 107⁃125  doi: 10.1016/j.ccr.2019.02.022

    15. [15]

      GHASEMPOUR H, WANG K Y, POWELL J A, ZAREKARIZI F, LV X L, MORSALI A, ZHOU H C. Metal⁃organic frameworks based on multicarboxylate linkers[J]. Coord. Chem. Rev., 2021, 426: 213542  doi: 10.1016/j.ccr.2020.213542

    16. [16]

      YAGHI O M. Reticular chemistry in all dimensions[J]. ACS Cent. Sci., 2019, 5(8): 1295⁃1300  doi: 10.1021/acscentsci.9b00750

    17. [17]

      ZHANG Y B, LI Q W, DENG H X. Reticular chemistry at the atomic, molecular, and framework scales[J]. Nano Res., 2021, 14(2): 335⁃337  doi: 10.1007/s12274-020-3226-6

    18. [18]

      TRICKETT C A, HELAL A, Al⁃MAYTHALONY B A, YAMANI Z H, CORDOVA K E, YAGHI O M. The chemistry of metal⁃organic frameworks for CO2 capture, regeneration and conversion[J]. Nat. Rev. Mater., 2017, 2: 17045  doi: 10.1038/natrevmats.2017.45

    19. [19]

      CHEN Z J, KIRLIKOVALI K O, LI P, FARHA O K. Reticular chemistry for highly porous metal⁃organic frameworks: The chemistry and applications[J]. Acc. Chem. Res., 2022, 55(4): 579⁃591  doi: 10.1021/acs.accounts.1c00707

    20. [20]

      SINGH G, LEE J, KARAKOTI A, BAHADUR R, YI J B, ZHAO D Y, ALBAHILY K, VINU A. Emerging trends in porous materials for CO2 capture and conversion[J]. Chem. Soc. Rev., 2020, 49(13): 4360⁃4404  doi: 10.1039/D0CS00075B

    21. [21]

      ZHANG Z J, YAO Z Z, XIANG S C, CHEN B L. Perspective of microporous metal⁃organic frameworks for CO2 capture and separation[J]. Energy Environ. Sci., 2014, 7(9): 2781⁃3088  doi: 10.1039/C4EE90035A

    22. [22]

      YU J M, XIE L H, LI J R, MA Y G, SEMINARIO J M, BALBUENA P B. CO2 capture and separations using MOFs: Computational and experimental studies[J]. Chem. Rev., 2017, 117(14): 9674⁃9754  doi: 10.1021/acs.chemrev.6b00626

    23. [23]

      LYU H, CHEN O I, HANIKEL N, HOSSAIN M I, FLAIG R W, PEI X K, AMIN A, DOHERTY M D, IMPASTATO R K, GLOVER T G, MOORE D R, YAGHI O M. Carbon dioxide capture chemistry of amino acid functionalized metal⁃organic frameworks in humid flue gas[J]. J. Am. Chem. Soc., 2022, 144(5): 2387⁃2396  doi: 10.1021/jacs.1c13368

    24. [24]

      MAURIN G, SERRE C, COOPER A, FéREY G. The new age of MOFs and of their porous⁃related solids[J]. Chem. Soc. Rev., 2017, 46(11): 3104⁃3107  doi: 10.1039/C7CS90049J

    25. [25]

      HENDON C H, RIETH A J, KORZYŃSKI M D, DINCă M. Grand challenges and future opportunities for metal⁃organic frameworks[J]. ACS Cent. Sci., 2017, 3(6): 554⁃563  doi: 10.1021/acscentsci.7b00197

    26. [26]

      HE Y B, CHEN F L, LI B, QIAN G D, ZHOU W, CHEN B L. Porous metal⁃organic frameworks for fuel storage[J]. Coord. Chem. Rev., 2018, 373: 167⁃198  doi: 10.1016/j.ccr.2017.10.002

    27. [27]

      ZHANG Z J, ZHAO Y G, GONG Q H, LI Z, LI J. MOFs for CO2 capture and separation from flue gas mixtures: The effect of multifunctional sites on their adsorption capacity and selectivity[J]. Chem. Commun., 2013, 49(7): 653⁃661  doi: 10.1039/C2CC35561B

    28. [28]

      WANG Q, BAI J F, LU Z Y, PAN Y, YOU X Z. Finely tuning MOFs towards high⁃performance post⁃combustion CO2 capture materials[J]. Chem. Commun., 2016, 52(3): 443⁃452  doi: 10.1039/C5CC07751F

    29. [29]

      CASKEY S R, WONG⁃FOY A G, MATZGER A J. Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores[J]. J. Am. Chem. Soc., 2008, 130(33): 10870⁃10871  doi: 10.1021/ja8036096

    30. [30]

      MCDONALD T M, LEE W R, MASON J A, WIERS B M, HONG C S, LONG J R. Capture of carbon dioxide from air and flue gas in the alkylamine⁃appended metal⁃organic framework mmen⁃Mg2(dobpdc)[J]. J. Am. Chem. Soc., 2012, 134(16): 7056⁃7065  doi: 10.1021/ja300034j

    31. [31]

      NUGENT P, BELMABKHOUT Y, BURD S D, CAIRNS A J, LUEBKE R, FORREST K, PHAM T, MA S Q, SPACE B, WOJTAS L, EDDAOUDI M, ZAWOROTKO M J. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation[J]. Nature., 2013, 495(7439): 80⁃84  doi: 10.1038/nature11893

    32. [32]

      LIN J B, NGUYEN T T T, VAIDHYANATHAN R, BURNER J, TAYLOR J M, DUREKOVA H, AKHTA F, MAH R K, GHAFFARI⁃N O, MARX S, FYLSTRA N, IREMONGER S S, DAWSON K W, SARKAR P, HOVINGTON P, RAJENDRAN A, WOO T K, SHIMIZU G K H. A scalable metal⁃organic framework as a durable physisorbent for carbon dioxide capture[J]. Science, 2021, 374: 1464⁃1469  doi: 10.1126/science.abi7281

    33. [33]

      EVANS H A, MULLANGI D, DENG Z Y, WANG Y X, PEH S B, WEI F X, WANG J, BROWN C M, ZHAO D, CANEPA P, CHEETHAM K C. Aluminum formate, Al(HCOO)3: An earth⁃abundant, scalable, and highly selective material for CO2 capture[J]. Sci. Adv., 2022, 8(44): eade1473  doi: 10.1126/sciadv.ade1473

    34. [34]

      WANG X Y, GU Y M, ZONG X P, ZHAO S S, WANG S D. Fluorido⁃bridged iron⁃based metal⁃organic frameworks for carbon dioxide capture in humid flue gas[J]. Fuel., 2024, 368: 131669  doi: 10.1016/j.fuel.2024.131669

    35. [35]

      LI Y Z, WANG G D, LU S J, XU F, ZHANG H, SUI Y W, HOU L. A moisture stable metal⁃organic framework for highly efficient CO2/N2, CO2/CH4 and CO2/CO separation[J]. Chem. Eng. J., 2024, 484: 149494  doi: 10.1016/j.cej.2024.149494

    36. [36]

      TU S, YU L, LIU J Q, LIN D X, WU Y, LI Z, WANG H, XIA Q B. Efficient CO2 capture under humid conditions on a novel amide⁃functionalized Fe⁃soc metal⁃organic framework[J]. ACS Appl. Mater. Interfaces, 2023, 15(9): 12240⁃12247  doi: 10.1021/acsami.3c00096

    37. [37]

      SONG D H, JIANG F L, YUAN D Q, CHEN Q H, HONG M C. Optimizing sieving effect for CO2 capture from humid air using an adaptive ultramicroporous framework[J]. Small., 2023, 19(44): 2302677  doi: 10.1002/smll.202302677

    38. [38]

      LOUGHRAN R P, HURLEY T, GLADYSIAK A, CHIDAMBARAM A, KHIVANTSEV K, WALTER E D, GRAHAM T R, REARDON P, SZANYI J, FAST D B, MILLER Q R S, PARK A H A, STYLIANOU K C. CO2 capture from wet flue gas using a water⁃stable and cost⁃ effective metal⁃organic framework[J]. Cell Rep. Phys Sci., 2023, 4(7): 101470  doi: 10.1016/j.xcrp.2023.101470

    39. [39]

      HU Y Q, JIANG Y J, LI J H, WANG L Y, STEINER M, NEUMANN R F, LUAN B Q, ZHANG Y B. New⁃generation anion⁃pillared metal⁃organic frameworks with customized cages for highly efficient CO2 capture[J]. Adv. Funct. Mater., 2023, 33(14): 2213915  doi: 10.1002/adfm.202213915

    40. [40]

      ESSALHI M, MOHAN M, DISSEM N, FERHI N, ABIDI A, MARIS T, DUONG A. Two different pore architectures of cyamelurate⁃based metal⁃organic frameworks for highly selective CO2 capture under ambient conditions[J]. Inorg. Chem. Front., 2023, 10(3): 1037⁃1048  doi: 10.1039/D2QI02208G

    41. [41]

      QAZVINI O T, TELFER S G. MUF⁃16: A robust metal⁃organic framework for pre⁃ and post⁃combustion carbon dioxide capture[J]. ACS Appl. Mater. Interfaces, 2021, 13(10): 12141⁃12148  doi: 10.1021/acsami.1c01156

    42. [42]

      BRIGGS L, NEWBY R, HAN X, MORRIS C G, SAVAGE M, KRAP C P, EASUN T L, FROGLEY M D, CINQUE G, MURRAY C A, TANG C C, SUN J L, YANG S H, SCHRÖDER M. Binding and separation of CO2, SO2 and C2H2 in homo⁃ and hetero⁃metallic metal⁃ organic framework materials[J]. J. Mater. Chem. A, 2021, 9(11): 7190⁃7197  doi: 10.1039/D1TA00687H

    43. [43]

      WU D, LIU C P, TIAN J Y, JIANG F L, YUAN D Q, CHEN Q H, HONG M C. Acid⁃base⁃resistant metal⁃organic framework for size⁃selective carbon dioxide capture[J]. Inorg. Chem., 2020, 59(18): 13542⁃13550  doi: 10.1021/acs.inorgchem.0c01912

    44. [44]

      QAZVINI O T, TELFER S G. A robust metal⁃organic framework for post⁃combustion carbon dioxide capture[J]. J. Mater. Chem. A, 2020, 8(24): 12028⁃12034  doi: 10.1039/D0TA04121A

    45. [45]

      GAO Y J, ZHANG M X, CHEN C, ZHANG Y, GU Y M, WANG Q, ZHANG W W, PAN Y, MA J, BAI J F. A low symmetry cluster meets a low symmetry ligand to sharply boost MOF thermal stability[J]. Chem. Commun., 2020, 56(80): 11985⁃11988  doi: 10.1039/D0CC04543H

    46. [46]

      WANG Z S, LI M, PENG Y L, ZHANG Z J, CHEN W, HUANG X C. An ultrastable metal azolate framework with binding pockets for optimal carbon dioxide capture[J]. Angew. Chem. ‒Int. Edit., 2019, 58(45): 16071⁃16076  doi: 10.1002/anie.201909046

    47. [47]

      CHEN C, ZHANG M X, ZHANG W W, BAI J F. Stable amide⁃functionalized metal⁃organic framework with highly selective CO2 adsorption[J]. Inorg. Chem., 2019, 58(4): 2729⁃2735  doi: 10.1021/acs.inorgchem.8b03308

    48. [48]

      ZHANG Q Q, LIU X F, MA L, WEI Y S, WANG Z Y, XU H, ZANG S Q. Remoulding a MOF′s pores by auxiliary ligand introduction for stability improvement and highly selective CO2⁃capture[J]. Chem. Commun., 2018, 54(85): 12029⁃12032  doi: 10.1039/C8CC06593D

    49. [49]

      LI H W, FENG X, MA D, ZHANG M X, ZHANG Y Y, LIU Y, ZHANG J W, WANG B. Stable aluminum metal⁃organic frameworks (Al⁃MOFs) for balanced CO2 and water selectivity[J]. ACS Appl. Mater. Interfaces, 2018, 10(4): 3160⁃3163  doi: 10.1021/acsami.7b17026

    50. [50]

      CHEN Y W, QIAO Z W, HUANG J L, WU H X, XIAO J, XIA Q B, XI H X, HU J, ZHOU J, LI Z. Unusual moisture⁃enhanced CO2 capture within microporous PCN⁃250 frameworks[J]. ACS Appl. Mater. Interfaces, 2018, 10(44): 38638⁃38647  doi: 10.1021/acsami.8b14400

    51. [51]

      NANDI S, HALDAR S, CHAKRABORT D, VAIDHYANATHAN R. Strategically designed azolyl⁃carboxylate MOFs for potential humid CO2 capture[J]. J. Mater. Chem. A., 2017, 5(2): 535⁃543  doi: 10.1039/C6TA07145G

    52. [52]

      LIANG L F, LIU C P, JIANG F L, CHEN Q H, ZHANG L J, XUE H, JIANG H L, QIAN J J, YUAN D Q, HONG M C. Carbon dioxide capture and conversion by an acid⁃base resistant metal⁃organic framework[J]. Nat. Commun., 2017, 8(1): 1233  doi: 10.1038/s41467-017-01166-3

    53. [53]

      CHEN C, JIANG Q B, XU H F, LIN Z. Highly efficient synthesis of a moisture⁃stable nitrogen⁃abundant metal⁃organic framework (MOF) for large⁃scale CO2 capture[J]. Ind. Eng. Chem. Res., 2019, 58(4): 1773⁃1777  doi: 10.1021/acs.iecr.8b05239

    54. [54]

      HU Z G, WANG Y X, FAROOQ S, ZHAO D. A highly stable metal⁃organic framework with optimum aperture size for CO2 capture[J]. Aiche J., 2017, 63(9): 4103⁃4114  doi: 10.1002/aic.15837

    55. [55]

      CHANDRASEKHAR P, SAVITHA G, MOORTHY J N. Robust MOFs of "tsg" topology based on trigonal prismatic organic and metal cluster sbus: Single crystal to single crystal postsynthetic metal exchange and selective CO2 capture[J]. Chem. Eur. J., 2017, 23(30): 7297⁃7305  doi: 10.1002/chem.201700139

    56. [56]

      LIU L, WANG S M, HAN Z B, DING M L, YUAN D Q, JIANG H L. Exceptionally robust in⁃based metal⁃organic framework for highly efficient carbon dioxide capture and conversion[J]. Inorg. Chem., 2016, 55(7): 3558⁃3565  doi: 10.1021/acs.inorgchem.6b00050

    57. [57]

      MASALA A, VITILLO J G, MONDINO G, GRANDE C A, BLOM R, MANZOLI M, MARSHALL M, BORDIGA S. CO2 capture in dry and wet conditions in UTSA⁃16 metal⁃organic framework[J]. ACS Appl. Mater. Interfaces, 2016, 9(1): 455⁃463

    58. [58]

      CHEN K J, MADDEN D G, PHAM T, FORREST K A, KUMAR A, YANG Q Y, XUE W, SPACE B, PERRY J J, ZHANG J P, CHEN X M, ZAWOROTKO M J. Tuning pore size in square⁃lattice coordination networks for size⁃selective sieving of CO2[J]. Angew. Chem. ‒Int. Edit., 2016, 55(35): 10268⁃10272  doi: 10.1002/anie.201603934

    59. [59]

      BENOIT V, PILLAI R S, ORSI A, NORMAND P, JOBIC H, NOUAR F, BILLEMONT P, BLOCH E, BOURRELLY S, DEVIC T, WRIGHT P A, DE WEIRELD G, SERRE C, MAURIN G, LLEWELLYN P L. MIL⁃91(Ti), a small pore metal⁃organic framework which fulfils several criteria: an upscaled green synthesis, excellent water stability, high CO2 selectivity and fast CO2 transport[J]. J. Mater. Chem. A, 2016, 4(4): 1383⁃1389  doi: 10.1039/C5TA09349J

    60. [60]

      YE Y X, XIONG S S, WU X N, ZHANG L Q, LI Z Y, WANG L H, MA X L, CHEN Q H, ZHANG Z J, XIANG S C. Microporous metal⁃organic framework stabilized by balanced multiple host⁃couteranion hydrogen⁃bonding interactions for high⁃density CO2 capture at ambient conditions[J]. Inorg. Chem., 2015, 55(1): 292⁃299

    61. [61]

      BAO S J, KRISHNA R, HE Y B, QIN J S, SU Z M, LI S L, XIE W, DU D Y, HE W W, ZHANG S R, LAN Y Q. A stable metal⁃organic framework with suitable pore sizes and rich uncoordinated nitrogen atoms on the internal surface of micropores for highly efficient CO2 capture[J]. J. Mater. Chem. A, 2015, 3(14): 7361⁃7367  doi: 10.1039/C5TA00256G

    62. [62]

      FRACAROLI A M, FURUKAWA H, SUZUKI M, DODD M, OKAJIMA S, GÁNDARA F, REIMER J A, YAGHI O M. Metal‑ organic frameworks with precisely designed interior for carbon dioxide capture in the presence of water[J]. J. Am. Chem. Soc., 2014, 136(25): 8863⁃8866  doi: 10.1021/ja503296c

    63. [63]

      YANG Q Y, VAESEN S, RAGON F, WIERSUM A D, WU D, LAGO A, DEVIC T, MARTINEAU C, TAULELLE F, LLEWELLYN P L, JOBIC H, ZHONG C L, SERRE C, DE WEIRELD G, MAURIN G. A water stable metal⁃organic framework with optimal features for CO2 capture[J]. Angew. Chem. ‒Int. Ed., 2013, 52(39): 10316⁃10320  doi: 10.1002/anie.201302682

    64. [64]

      LIAO P Q, ZHOU D D, ZHU A X, JIANG L, LIN R B, ZHANG J P, CHEN X M. Strong and dynamic CO2 sorption in a flexible porous framework possessing guest chelating claws[J]. J. Am. Chem. Soc., 2012, 134(42): 17380⁃17383  doi: 10.1021/ja3073512

    65. [65]

      ZHOU X P, LI M, LIU J, LI D. Gyroidal metal⁃organic frameworks[J]. J. Am. Chem. Soc., 2011, 134(1): 67⁃70

    66. [66]

      DATTA S J, KHUMNOON C, LEE Z H, MOON W K, DOCAO S, NGUYEN T H, HWANG I C, MOON D, OLEYNIKOV P, OSAMU TERASAKI O, YOON K B. CO2 capture from humid flue gases and humid atmosphere using a microporous coppersilicate[J]. Science, 2015, 350(6258): 302⁃306  doi: 10.1126/science.aab1680

    67. [67]

      MORRIS W, LEUNG B, FURUKAWA H, YAGHI O K, HE N, HAYASHI H, HOUNDONOUGBO Y, ASTA M, LAIRD B B, YAGHI O M. A combined experimental⁃computational investigation of carbon dioxide capture in a series of isoreticular zeolitic imidazolate frameworks[J]. J. Am. Chem. Soc., 2010, 132(32): 11006⁃11008  doi: 10.1021/ja104035j

    68. [68]

      BANERJEE R, PHAN A, WANG B, KNOBLER C, FURUKAWA H, O′KEEFFE M, YAGHI O M. High⁃throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture[J]. Science, 2008, 319(5865): 939⁃943  doi: 10.1126/science.1152516

    69. [69]

      JEONG S M, CHO K H, LEE S K, YOON J W, LEE J S, JO D, LEE U H. Carbon dioxide capture in a carbonate⁃pillared ultramicroporous metal⁃organic framework[J]. ACS Sustain. Chem. Eng., 2024, 12(21): 8165⁃8173  doi: 10.1021/acssuschemeng.4c01172

    70. [70]

      SHI Z L, TAO Y, WU J S, ZHANG C Z, HE H L, LONG L L, LEE Y J, LI T, ZHANG Y B. Robust metal⁃triazolate frameworks for CO2 capture from flue gas[J]. J. Am. Chem. Soc., 2020, 142(6): 2750⁃ 2754  doi: 10.1021/jacs.9b12879

    71. [71]

      YU C, DING Q, HU J B, WANG Q J, CUI X L, XING H B. Selective capture of carbon dioxide from humid gases over a wide temperature range using a robust metal⁃organic framework[J]. Chem. Eng. J., 2021, 405(21): 126937

    72. [72]

      NANDI S, COLLINS S, CHAKRABORTY D, BANERJEE D, THALLAPALLY P K, WOO T K, VAIDHYANATHAN R. Ultralow parasitic energy for postcombustion CO2 capture realized in a nickel isonicotinate metal⁃organic framework with excellent moisture stability[J]. J. Am. Chem. Soc., 2017, 139(5): 1734⁃1737  doi: 10.1021/jacs.6b10455

    73. [73]

      ZHOU H F, LIU B, HOU L, ZHANG W Y, WANG Y Y. Rational construction of a stable Zn4O⁃based MOF for highly efficient CO2 capture and conversion[J]. Chem. Commun., 2018, 54(5): 456⁃459  doi: 10.1039/C7CC08473K

    74. [74]

      PARK K S, NI Z, CÔTÉ A P, CHOI J Y, HUANG R D, URIBE⁃ROMO F J, CHAE H K, O'KEEFFE M, YAGHI O M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proc. Natl. Acad. Sci., 2006, 103(27): 10186⁃10191  doi: 10.1073/pnas.0602439103

    75. [75]

      HUANG X C, LIN Y Y, ZHANG J P, CHEN X M. Ligand⁃directed strategy for zeolite⁃type metal⁃organic frameworks: Zinc􀃭 imidazolates with unusual zeolitic topologies[J]. Angew. Chem. ‒Int. Edit., 2006, 45(10): 1557⁃1559

    76. [76]

      SHI Y S, XIE Y, ALSHAHRANI T, CHEN B L. A zirconium⁃based microporous metal⁃organic framework for molecular sieving CO2 separation[J]. Crystengcomm., 2023, 25(11): 1643⁃1647  doi: 10.1039/D3CE00085K

    77. [77]

      ZHANG L, HE Z Y, LIU Y P, YOU J J, LIN L, JIA J H, CHEN S, HUA N B, MA L A, YE X Y, LIU Y R, CHEN C X, WANG Q T. A robust squarate⁃cobalt metal⁃organic framework for CO2/N2 separation[J]. ACS Appl. Mater. Interfaces, 2023, 15(25): 30394⁃30401

    78. [78]

      BANERJEE A, NANDI S, NASA P, VAIDHYANATHAN R. Enhancing the carbon capture capacities of a rigid ultra⁃microporous MOF through gate⁃opening at low CO2 pressures assisted by swiveling oxalate pillars[J]. Chem. Commun., 2016, 52(9): 1851⁃1854  doi: 10.1039/C5CC08172F

    79. [79]

      GOPALSAMY K, FAN D, NASKAR S, MAGNIN Y, MAURIN G. Engineering of an isoreticular series of CALF‑20 metal‑organic frameworks for CO2 capture[J]. ACS Appl. Eng. Mater., 2024, 2(1): 96⁃103  doi: 10.1021/acsaenm.3c00622

    80. [80]

      LIANG W B, BABARAO R, MURPHY M J, D′ALESSANDRO D M. The first example of a zirconium⁃oxide based metal⁃organic framework constructed from monocarboxylate ligands[J]. Dalton. Trans., 2015, 44(4): 1516⁃1519

  • 加载中
    1. [1]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    2. [2]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    3. [3]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    4. [4]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    5. [5]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    6. [6]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    7. [7]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    8. [8]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    9. [9]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    10. [10]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    11. [11]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    12. [12]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    13. [13]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    14. [14]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    15. [15]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    16. [16]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    17. [17]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    18. [18]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    19. [19]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    20. [20]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

Metrics
  • PDF Downloads(4)
  • Abstract views(367)
  • HTML views(72)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return