Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas
- Corresponding author: Qian WANG, wangqhf@njtech.edu.cn Junfeng BAI, bjunfeng@njtech.edu.cn
Citation:
Mengzhen JIANG, Qian WANG, Junfeng BAI. Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(1): 1-13.
doi:
10.11862/CJIC.20240355
LIU Z C, YI X D, GAO F X, XIE Z K, HAN B X, SUN Y H, HE M Y, YANG J L. Green carbon science: a scientific basis for achieving 'dual carbon' goal—academic summary of the 292nd "shuang⁃qing forum"[J]. Acta Phys. ‒Chim. Sin., 2023, 39(1): 2112029
SUMIDA K, ROGOW D L, MASON J A, MCDONALD T M, BLOCH E D, HERM Z R, BAE T H, LONG J R. Carbon dioxide capture in metal⁃organic frameworks[J]. Chem. Rev., 2012, 112(2): 724⁃781
doi: 10.1021/cr2003272
D′ALESSANDRO D M, SMIT B, LONG J R. Carbon dioxide capture: prospects for new materials[J]. Angew. Chem. ‒Int. Edit., 2010, 49(35): 6058⁃6082
doi: 10.1002/anie.201000431
KALMUTZKI M J, HANIKEL N, YAGHI O M. Secondary building units as the turning point in the development of the reticular chemistry of MOFs[J]. Sci. Adv., 2018, 4: eaat9180
doi: 10.1126/sciadv.aat9180
FAN W D, ZHANG X R, KANG Z X, LIU X P, SUN D F. Isoreticular chemistry within metal⁃organic frameworks for gas storage and separation[J]. Coord. Chem. Rev., 2021, 440: 213968
FREUND R, CANOSSA S, COHEN S M, YAN W, DENG H X, GUILLERM V, EDDAOUDI M, MADDEN D G, FAIREN⁃JIMENEZ D, LYU H, MACREADIE L K, JI Z, ZHANG Y Y, WANG B, HAASE F, WÖLL C, ZAREMBA O, ANDREO J, WUTTKE S, DIERCKS C S. 25 years of reticular chemistry[J]. Angew. Chem. ‒Int. Edit., 2021, 60(45): 23946⁃23974
doi: 10.1002/anie.202101644
FURUKAWA H, CORDOVA K E, O′KEEFFE M, YAGHI O M. The chemistry and applications of metal⁃organic frameworks[J]. Science, 2013, 341: 1230444
doi: 10.1126/science.1230444
KITAGAWA S. Porous crystalline materials: Closing remarks[J]. Faraday Discuss., 2017, 201: 395⁃404
doi: 10.1039/C7FD90042B
RUNGTAWEEVORANIT B, DIERCKS C S, KALMUTZKI M J, YAGHI O M. Spiers memorial lecture: Progress and prospects of reticular chemistry[J]. Faraday Discuss., 2017, 201: 9⁃45
doi: 10.1039/C7FD00160F
DU L T, LU Z Y, ZHENG K Y, WANG J Y, ZHENG X, PAN Y, YOU X Z, BAI J F. Fine⁃tuning pore size by shifting coordination sites of ligands and surface polarization of metal⁃organic frameworks to sharply enhance the selectivity for CO2[J]. J. Am. Chem. Soc., 2013, 135(2): 562⁃565
doi: 10.1021/ja309992a
LI J T, BHATT P M, LI J Y, EDDAOUDI M, LIU Y L. Recent progress on microfine design of metal⁃organic frameworks: Structure regulation and gas sorption and separation[J]. Adv. Mater., 2020, 32(44): 2002563
doi: 10.1002/adma.202002563
MASOOMI M Y, MORSALI A, DHAKSHINAMOORTHY A, GARCIA H. Mixed⁃metal MOFs: Unique opportunities in metal⁃organic framework (MOF) functionality and design[J]. Angew. Chem. ‒Int. Edit., 2019, 131: 15330⁃15347
doi: 10.1002/ange.201902229
BHATT P M, GUILLERM V, DATTA S J, SHKURENKO A, EDDAOUDI M. Topology meets reticular chemistry for chemical separations: MOFs as a case study[J]. Chem, 2020, 6(7): 1613⁃1633
doi: 10.1016/j.chempr.2020.06.018
PANG Q Q, TU B B, LI Q W. Metal⁃organic frameworks with multicomponents in order[J]. Coord. Chem. Rev., 2019, 388: 107⁃125
doi: 10.1016/j.ccr.2019.02.022
GHASEMPOUR H, WANG K Y, POWELL J A, ZAREKARIZI F, LV X L, MORSALI A, ZHOU H C. Metal⁃organic frameworks based on multicarboxylate linkers[J]. Coord. Chem. Rev., 2021, 426: 213542
doi: 10.1016/j.ccr.2020.213542
YAGHI O M. Reticular chemistry in all dimensions[J]. ACS Cent. Sci., 2019, 5(8): 1295⁃1300
doi: 10.1021/acscentsci.9b00750
ZHANG Y B, LI Q W, DENG H X. Reticular chemistry at the atomic, molecular, and framework scales[J]. Nano Res., 2021, 14(2): 335⁃337
doi: 10.1007/s12274-020-3226-6
TRICKETT C A, HELAL A, Al⁃MAYTHALONY B A, YAMANI Z H, CORDOVA K E, YAGHI O M. The chemistry of metal⁃organic frameworks for CO2 capture, regeneration and conversion[J]. Nat. Rev. Mater., 2017, 2: 17045
doi: 10.1038/natrevmats.2017.45
CHEN Z J, KIRLIKOVALI K O, LI P, FARHA O K. Reticular chemistry for highly porous metal⁃organic frameworks: The chemistry and applications[J]. Acc. Chem. Res., 2022, 55(4): 579⁃591
doi: 10.1021/acs.accounts.1c00707
SINGH G, LEE J, KARAKOTI A, BAHADUR R, YI J B, ZHAO D Y, ALBAHILY K, VINU A. Emerging trends in porous materials for CO2 capture and conversion[J]. Chem. Soc. Rev., 2020, 49(13): 4360⁃4404
doi: 10.1039/D0CS00075B
ZHANG Z J, YAO Z Z, XIANG S C, CHEN B L. Perspective of microporous metal⁃organic frameworks for CO2 capture and separation[J]. Energy Environ. Sci., 2014, 7(9): 2781⁃3088
doi: 10.1039/C4EE90035A
YU J M, XIE L H, LI J R, MA Y G, SEMINARIO J M, BALBUENA P B. CO2 capture and separations using MOFs: Computational and experimental studies[J]. Chem. Rev., 2017, 117(14): 9674⁃9754
doi: 10.1021/acs.chemrev.6b00626
LYU H, CHEN O I, HANIKEL N, HOSSAIN M I, FLAIG R W, PEI X K, AMIN A, DOHERTY M D, IMPASTATO R K, GLOVER T G, MOORE D R, YAGHI O M. Carbon dioxide capture chemistry of amino acid functionalized metal⁃organic frameworks in humid flue gas[J]. J. Am. Chem. Soc., 2022, 144(5): 2387⁃2396
doi: 10.1021/jacs.1c13368
MAURIN G, SERRE C, COOPER A, FéREY G. The new age of MOFs and of their porous⁃related solids[J]. Chem. Soc. Rev., 2017, 46(11): 3104⁃3107
doi: 10.1039/C7CS90049J
HENDON C H, RIETH A J, KORZYŃSKI M D, DINCă M. Grand challenges and future opportunities for metal⁃organic frameworks[J]. ACS Cent. Sci., 2017, 3(6): 554⁃563
doi: 10.1021/acscentsci.7b00197
HE Y B, CHEN F L, LI B, QIAN G D, ZHOU W, CHEN B L. Porous metal⁃organic frameworks for fuel storage[J]. Coord. Chem. Rev., 2018, 373: 167⁃198
doi: 10.1016/j.ccr.2017.10.002
ZHANG Z J, ZHAO Y G, GONG Q H, LI Z, LI J. MOFs for CO2 capture and separation from flue gas mixtures: The effect of multifunctional sites on their adsorption capacity and selectivity[J]. Chem. Commun., 2013, 49(7): 653⁃661
doi: 10.1039/C2CC35561B
WANG Q, BAI J F, LU Z Y, PAN Y, YOU X Z. Finely tuning MOFs towards high⁃performance post⁃combustion CO2 capture materials[J]. Chem. Commun., 2016, 52(3): 443⁃452
doi: 10.1039/C5CC07751F
CASKEY S R, WONG⁃FOY A G, MATZGER A J. Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores[J]. J. Am. Chem. Soc., 2008, 130(33): 10870⁃10871
doi: 10.1021/ja8036096
MCDONALD T M, LEE W R, MASON J A, WIERS B M, HONG C S, LONG J R. Capture of carbon dioxide from air and flue gas in the alkylamine⁃appended metal⁃organic framework mmen⁃Mg2(dobpdc)[J]. J. Am. Chem. Soc., 2012, 134(16): 7056⁃7065
doi: 10.1021/ja300034j
NUGENT P, BELMABKHOUT Y, BURD S D, CAIRNS A J, LUEBKE R, FORREST K, PHAM T, MA S Q, SPACE B, WOJTAS L, EDDAOUDI M, ZAWOROTKO M J. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation[J]. Nature., 2013, 495(7439): 80⁃84
doi: 10.1038/nature11893
LIN J B, NGUYEN T T T, VAIDHYANATHAN R, BURNER J, TAYLOR J M, DUREKOVA H, AKHTA F, MAH R K, GHAFFARI⁃N O, MARX S, FYLSTRA N, IREMONGER S S, DAWSON K W, SARKAR P, HOVINGTON P, RAJENDRAN A, WOO T K, SHIMIZU G K H. A scalable metal⁃organic framework as a durable physisorbent for carbon dioxide capture[J]. Science, 2021, 374: 1464⁃1469
doi: 10.1126/science.abi7281
EVANS H A, MULLANGI D, DENG Z Y, WANG Y X, PEH S B, WEI F X, WANG J, BROWN C M, ZHAO D, CANEPA P, CHEETHAM K C. Aluminum formate, Al(HCOO)3: An earth⁃abundant, scalable, and highly selective material for CO2 capture[J]. Sci. Adv., 2022, 8(44): eade1473
doi: 10.1126/sciadv.ade1473
WANG X Y, GU Y M, ZONG X P, ZHAO S S, WANG S D. Fluorido⁃bridged iron⁃based metal⁃organic frameworks for carbon dioxide capture in humid flue gas[J]. Fuel., 2024, 368: 131669
doi: 10.1016/j.fuel.2024.131669
LI Y Z, WANG G D, LU S J, XU F, ZHANG H, SUI Y W, HOU L. A moisture stable metal⁃organic framework for highly efficient CO2/N2, CO2/CH4 and CO2/CO separation[J]. Chem. Eng. J., 2024, 484: 149494
doi: 10.1016/j.cej.2024.149494
TU S, YU L, LIU J Q, LIN D X, WU Y, LI Z, WANG H, XIA Q B. Efficient CO2 capture under humid conditions on a novel amide⁃functionalized Fe⁃soc metal⁃organic framework[J]. ACS Appl. Mater. Interfaces, 2023, 15(9): 12240⁃12247
doi: 10.1021/acsami.3c00096
SONG D H, JIANG F L, YUAN D Q, CHEN Q H, HONG M C. Optimizing sieving effect for CO2 capture from humid air using an adaptive ultramicroporous framework[J]. Small., 2023, 19(44): 2302677
doi: 10.1002/smll.202302677
LOUGHRAN R P, HURLEY T, GLADYSIAK A, CHIDAMBARAM A, KHIVANTSEV K, WALTER E D, GRAHAM T R, REARDON P, SZANYI J, FAST D B, MILLER Q R S, PARK A H A, STYLIANOU K C. CO2 capture from wet flue gas using a water⁃stable and cost⁃ effective metal⁃organic framework[J]. Cell Rep. Phys Sci., 2023, 4(7): 101470
doi: 10.1016/j.xcrp.2023.101470
HU Y Q, JIANG Y J, LI J H, WANG L Y, STEINER M, NEUMANN R F, LUAN B Q, ZHANG Y B. New⁃generation anion⁃pillared metal⁃organic frameworks with customized cages for highly efficient CO2 capture[J]. Adv. Funct. Mater., 2023, 33(14): 2213915
doi: 10.1002/adfm.202213915
ESSALHI M, MOHAN M, DISSEM N, FERHI N, ABIDI A, MARIS T, DUONG A. Two different pore architectures of cyamelurate⁃based metal⁃organic frameworks for highly selective CO2 capture under ambient conditions[J]. Inorg. Chem. Front., 2023, 10(3): 1037⁃1048
doi: 10.1039/D2QI02208G
QAZVINI O T, TELFER S G. MUF⁃16: A robust metal⁃organic framework for pre⁃ and post⁃combustion carbon dioxide capture[J]. ACS Appl. Mater. Interfaces, 2021, 13(10): 12141⁃12148
doi: 10.1021/acsami.1c01156
BRIGGS L, NEWBY R, HAN X, MORRIS C G, SAVAGE M, KRAP C P, EASUN T L, FROGLEY M D, CINQUE G, MURRAY C A, TANG C C, SUN J L, YANG S H, SCHRÖDER M. Binding and separation of CO2, SO2 and C2H2 in homo⁃ and hetero⁃metallic metal⁃ organic framework materials[J]. J. Mater. Chem. A, 2021, 9(11): 7190⁃7197
doi: 10.1039/D1TA00687H
WU D, LIU C P, TIAN J Y, JIANG F L, YUAN D Q, CHEN Q H, HONG M C. Acid⁃base⁃resistant metal⁃organic framework for size⁃selective carbon dioxide capture[J]. Inorg. Chem., 2020, 59(18): 13542⁃13550
doi: 10.1021/acs.inorgchem.0c01912
QAZVINI O T, TELFER S G. A robust metal⁃organic framework for post⁃combustion carbon dioxide capture[J]. J. Mater. Chem. A, 2020, 8(24): 12028⁃12034
doi: 10.1039/D0TA04121A
GAO Y J, ZHANG M X, CHEN C, ZHANG Y, GU Y M, WANG Q, ZHANG W W, PAN Y, MA J, BAI J F. A low symmetry cluster meets a low symmetry ligand to sharply boost MOF thermal stability[J]. Chem. Commun., 2020, 56(80): 11985⁃11988
doi: 10.1039/D0CC04543H
WANG Z S, LI M, PENG Y L, ZHANG Z J, CHEN W, HUANG X C. An ultrastable metal azolate framework with binding pockets for optimal carbon dioxide capture[J]. Angew. Chem. ‒Int. Edit., 2019, 58(45): 16071⁃16076
doi: 10.1002/anie.201909046
CHEN C, ZHANG M X, ZHANG W W, BAI J F. Stable amide⁃functionalized metal⁃organic framework with highly selective CO2 adsorption[J]. Inorg. Chem., 2019, 58(4): 2729⁃2735
doi: 10.1021/acs.inorgchem.8b03308
ZHANG Q Q, LIU X F, MA L, WEI Y S, WANG Z Y, XU H, ZANG S Q. Remoulding a MOF′s pores by auxiliary ligand introduction for stability improvement and highly selective CO2⁃capture[J]. Chem. Commun., 2018, 54(85): 12029⁃12032
doi: 10.1039/C8CC06593D
LI H W, FENG X, MA D, ZHANG M X, ZHANG Y Y, LIU Y, ZHANG J W, WANG B. Stable aluminum metal⁃organic frameworks (Al⁃MOFs) for balanced CO2 and water selectivity[J]. ACS Appl. Mater. Interfaces, 2018, 10(4): 3160⁃3163
doi: 10.1021/acsami.7b17026
CHEN Y W, QIAO Z W, HUANG J L, WU H X, XIAO J, XIA Q B, XI H X, HU J, ZHOU J, LI Z. Unusual moisture⁃enhanced CO2 capture within microporous PCN⁃250 frameworks[J]. ACS Appl. Mater. Interfaces, 2018, 10(44): 38638⁃38647
doi: 10.1021/acsami.8b14400
NANDI S, HALDAR S, CHAKRABORT D, VAIDHYANATHAN R. Strategically designed azolyl⁃carboxylate MOFs for potential humid CO2 capture[J]. J. Mater. Chem. A., 2017, 5(2): 535⁃543
doi: 10.1039/C6TA07145G
LIANG L F, LIU C P, JIANG F L, CHEN Q H, ZHANG L J, XUE H, JIANG H L, QIAN J J, YUAN D Q, HONG M C. Carbon dioxide capture and conversion by an acid⁃base resistant metal⁃organic framework[J]. Nat. Commun., 2017, 8(1): 1233
doi: 10.1038/s41467-017-01166-3
CHEN C, JIANG Q B, XU H F, LIN Z. Highly efficient synthesis of a moisture⁃stable nitrogen⁃abundant metal⁃organic framework (MOF) for large⁃scale CO2 capture[J]. Ind. Eng. Chem. Res., 2019, 58(4): 1773⁃1777
doi: 10.1021/acs.iecr.8b05239
HU Z G, WANG Y X, FAROOQ S, ZHAO D. A highly stable metal⁃organic framework with optimum aperture size for CO2 capture[J]. Aiche J., 2017, 63(9): 4103⁃4114
doi: 10.1002/aic.15837
CHANDRASEKHAR P, SAVITHA G, MOORTHY J N. Robust MOFs of "tsg" topology based on trigonal prismatic organic and metal cluster sbus: Single crystal to single crystal postsynthetic metal exchange and selective CO2 capture[J]. Chem. Eur. J., 2017, 23(30): 7297⁃7305
doi: 10.1002/chem.201700139
LIU L, WANG S M, HAN Z B, DING M L, YUAN D Q, JIANG H L. Exceptionally robust in⁃based metal⁃organic framework for highly efficient carbon dioxide capture and conversion[J]. Inorg. Chem., 2016, 55(7): 3558⁃3565
doi: 10.1021/acs.inorgchem.6b00050
MASALA A, VITILLO J G, MONDINO G, GRANDE C A, BLOM R, MANZOLI M, MARSHALL M, BORDIGA S. CO2 capture in dry and wet conditions in UTSA⁃16 metal⁃organic framework[J]. ACS Appl. Mater. Interfaces, 2016, 9(1): 455⁃463
CHEN K J, MADDEN D G, PHAM T, FORREST K A, KUMAR A, YANG Q Y, XUE W, SPACE B, PERRY J J, ZHANG J P, CHEN X M, ZAWOROTKO M J. Tuning pore size in square⁃lattice coordination networks for size⁃selective sieving of CO2[J]. Angew. Chem. ‒Int. Edit., 2016, 55(35): 10268⁃10272
doi: 10.1002/anie.201603934
BENOIT V, PILLAI R S, ORSI A, NORMAND P, JOBIC H, NOUAR F, BILLEMONT P, BLOCH E, BOURRELLY S, DEVIC T, WRIGHT P A, DE WEIRELD G, SERRE C, MAURIN G, LLEWELLYN P L. MIL⁃91(Ti), a small pore metal⁃organic framework which fulfils several criteria: an upscaled green synthesis, excellent water stability, high CO2 selectivity and fast CO2 transport[J]. J. Mater. Chem. A, 2016, 4(4): 1383⁃1389
doi: 10.1039/C5TA09349J
YE Y X, XIONG S S, WU X N, ZHANG L Q, LI Z Y, WANG L H, MA X L, CHEN Q H, ZHANG Z J, XIANG S C. Microporous metal⁃organic framework stabilized by balanced multiple host⁃couteranion hydrogen⁃bonding interactions for high⁃density CO2 capture at ambient conditions[J]. Inorg. Chem., 2015, 55(1): 292⁃299
BAO S J, KRISHNA R, HE Y B, QIN J S, SU Z M, LI S L, XIE W, DU D Y, HE W W, ZHANG S R, LAN Y Q. A stable metal⁃organic framework with suitable pore sizes and rich uncoordinated nitrogen atoms on the internal surface of micropores for highly efficient CO2 capture[J]. J. Mater. Chem. A, 2015, 3(14): 7361⁃7367
doi: 10.1039/C5TA00256G
FRACAROLI A M, FURUKAWA H, SUZUKI M, DODD M, OKAJIMA S, GÁNDARA F, REIMER J A, YAGHI O M. Metal‑ organic frameworks with precisely designed interior for carbon dioxide capture in the presence of water[J]. J. Am. Chem. Soc., 2014, 136(25): 8863⁃8866
doi: 10.1021/ja503296c
YANG Q Y, VAESEN S, RAGON F, WIERSUM A D, WU D, LAGO A, DEVIC T, MARTINEAU C, TAULELLE F, LLEWELLYN P L, JOBIC H, ZHONG C L, SERRE C, DE WEIRELD G, MAURIN G. A water stable metal⁃organic framework with optimal features for CO2 capture[J]. Angew. Chem. ‒Int. Ed., 2013, 52(39): 10316⁃10320
doi: 10.1002/anie.201302682
LIAO P Q, ZHOU D D, ZHU A X, JIANG L, LIN R B, ZHANG J P, CHEN X M. Strong and dynamic CO2 sorption in a flexible porous framework possessing guest chelating claws[J]. J. Am. Chem. Soc., 2012, 134(42): 17380⁃17383
doi: 10.1021/ja3073512
ZHOU X P, LI M, LIU J, LI D. Gyroidal metal⁃organic frameworks[J]. J. Am. Chem. Soc., 2011, 134(1): 67⁃70
DATTA S J, KHUMNOON C, LEE Z H, MOON W K, DOCAO S, NGUYEN T H, HWANG I C, MOON D, OLEYNIKOV P, OSAMU TERASAKI O, YOON K B. CO2 capture from humid flue gases and humid atmosphere using a microporous coppersilicate[J]. Science, 2015, 350(6258): 302⁃306
doi: 10.1126/science.aab1680
MORRIS W, LEUNG B, FURUKAWA H, YAGHI O K, HE N, HAYASHI H, HOUNDONOUGBO Y, ASTA M, LAIRD B B, YAGHI O M. A combined experimental⁃computational investigation of carbon dioxide capture in a series of isoreticular zeolitic imidazolate frameworks[J]. J. Am. Chem. Soc., 2010, 132(32): 11006⁃11008
doi: 10.1021/ja104035j
BANERJEE R, PHAN A, WANG B, KNOBLER C, FURUKAWA H, O′KEEFFE M, YAGHI O M. High⁃throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture[J]. Science, 2008, 319(5865): 939⁃943
doi: 10.1126/science.1152516
JEONG S M, CHO K H, LEE S K, YOON J W, LEE J S, JO D, LEE U H. Carbon dioxide capture in a carbonate⁃pillared ultramicroporous metal⁃organic framework[J]. ACS Sustain. Chem. Eng., 2024, 12(21): 8165⁃8173
doi: 10.1021/acssuschemeng.4c01172
SHI Z L, TAO Y, WU J S, ZHANG C Z, HE H L, LONG L L, LEE Y J, LI T, ZHANG Y B. Robust metal⁃triazolate frameworks for CO2 capture from flue gas[J]. J. Am. Chem. Soc., 2020, 142(6): 2750⁃ 2754
doi: 10.1021/jacs.9b12879
YU C, DING Q, HU J B, WANG Q J, CUI X L, XING H B. Selective capture of carbon dioxide from humid gases over a wide temperature range using a robust metal⁃organic framework[J]. Chem. Eng. J., 2021, 405(21): 126937
NANDI S, COLLINS S, CHAKRABORTY D, BANERJEE D, THALLAPALLY P K, WOO T K, VAIDHYANATHAN R. Ultralow parasitic energy for postcombustion CO2 capture realized in a nickel isonicotinate metal⁃organic framework with excellent moisture stability[J]. J. Am. Chem. Soc., 2017, 139(5): 1734⁃1737
doi: 10.1021/jacs.6b10455
ZHOU H F, LIU B, HOU L, ZHANG W Y, WANG Y Y. Rational construction of a stable Zn4O⁃based MOF for highly efficient CO2 capture and conversion[J]. Chem. Commun., 2018, 54(5): 456⁃459
doi: 10.1039/C7CC08473K
PARK K S, NI Z, CÔTÉ A P, CHOI J Y, HUANG R D, URIBE⁃ROMO F J, CHAE H K, O'KEEFFE M, YAGHI O M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proc. Natl. Acad. Sci., 2006, 103(27): 10186⁃10191
doi: 10.1073/pnas.0602439103
HUANG X C, LIN Y Y, ZHANG J P, CHEN X M. Ligand⁃directed strategy for zeolite⁃type metal⁃organic frameworks: Zinc imidazolates with unusual zeolitic topologies[J]. Angew. Chem. ‒Int. Edit., 2006, 45(10): 1557⁃1559
SHI Y S, XIE Y, ALSHAHRANI T, CHEN B L. A zirconium⁃based microporous metal⁃organic framework for molecular sieving CO2 separation[J]. Crystengcomm., 2023, 25(11): 1643⁃1647
doi: 10.1039/D3CE00085K
ZHANG L, HE Z Y, LIU Y P, YOU J J, LIN L, JIA J H, CHEN S, HUA N B, MA L A, YE X Y, LIU Y R, CHEN C X, WANG Q T. A robust squarate⁃cobalt metal⁃organic framework for CO2/N2 separation[J]. ACS Appl. Mater. Interfaces, 2023, 15(25): 30394⁃30401
BANERJEE A, NANDI S, NASA P, VAIDHYANATHAN R. Enhancing the carbon capture capacities of a rigid ultra⁃microporous MOF through gate⁃opening at low CO2 pressures assisted by swiveling oxalate pillars[J]. Chem. Commun., 2016, 52(9): 1851⁃1854
doi: 10.1039/C5CC08172F
GOPALSAMY K, FAN D, NASKAR S, MAGNIN Y, MAURIN G. Engineering of an isoreticular series of CALF‑20 metal‑organic frameworks for CO2 capture[J]. ACS Appl. Eng. Mater., 2024, 2(1): 96⁃103
doi: 10.1021/acsaenm.3c00622
LIANG W B, BABARAO R, MURPHY M J, D′ALESSANDRO D M. The first example of a zirconium⁃oxide based metal⁃organic framework constructed from monocarboxylate ligands[J]. Dalton. Trans., 2015, 44(4): 1516⁃1519
Youlin SI , Shuquan SUN , Junsong YANG , Zijun BIE , Yan CHEN , Li LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
Fugui XI , Du LI , Zhourui YAN , Hui WANG , Junyu XIANG , Zhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
Yongzhi LI , Han ZHANG , Gangding WANG , Yanwei SUI , Lei HOU , Yaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
Weichen WANG , Chunhua GONG , Junyong ZHANG , Yanfeng BI , Hao XU , Jingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
Wendian XIE , Yuehua LONG , Jianyang XIE , Liqun XING , Shixiong SHE , Yan YANG , Zhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050
Shasha Ma , Zujin Yang , Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008
Aiai WANG , Lu ZHAO , Yunfeng BAI , Feng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
Bin HE , Hao ZHANG , Lin XU , Yanghe LIU , Feifan LANG , Jiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161
Fan Wu , Wenchang Tian , Jin Liu , Qiuting Zhang , YanHui Zhong , Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096