CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH
- Corresponding author: Weiyin SUN, sunwy@nju.edu.cn
Citation:
Fangfang WANG, Jiaqi CHEN, Weiyin SUN. CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(1): 97-104.
doi:
10.11862/CJIC.20240350
LI W Z, YIN Z L, GAO Z Y, WANG G W, LI Z, WEI F Y, WEI X, PENG H Q, HU X T, XIAO L, LU J, ZHUANG L. Bifunctional ionomers for efficient co-electrolysis of CO2 and pure water towards ethylene production at industrial scale current densities[J]. Nat. Energy, 2022,7(9):835-843. doi: 10.1038/s41560-022-01092-9
LIU G B, LI Z H, SHI J J, SUN K, JI Y J, WANG Z G, QIU Y F, LIU Y Y, WANG Z J, HU P A. Black reduced porous SnO2 nanosheets for CO2 electroreduction with high formate selectivity and low overpotential[J]. Appl. Catal. B-Environ., 2020,260118134. doi: 10.1016/j.apcatb.2019.118134
LIU M, PANG Y J, ZHANG B, DE LUNA P, VOZNYY O, XU J X, ZHENG X L, DINH C T, FAN F J, CAO C H, DE ARQUER F P G, SAFAEI T S, MEPHAM A, KLINKOVA A, KUMACHEVA E, FILLETER T, SINTON D, KELLEY S O, SARGENT E H. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration[J]. Nature, 2016,537(7620):382-386. doi: 10.1038/nature19060
XIN H, LIN L, LI R T, LI D, SONG T Y, MU R T, FU Q, BAO X H. Overturning CO2 Hydrogenation selectivity with high activity via reaction-induced strong metal-support interactions[J]. J. Am. Chem. Soc., 2022,144(11):4874-4882. doi: 10.1021/jacs.1c12603
WANG Z H, LI Y C, ZHAO X, CHEN S Q, NIAN Q S, LUO X, FAN J J, RUAN D G, XIONG B Q, REN X D. Localized alkaline environment via in situ electrostatic confinement for enhanced CO 2-to-ethylene conversion in neutral medium[J]. J. Am. Chem. Soc., 2023,145(11):6339-6348. doi: 10.1021/jacs.2c13384
NGUYEN N T, XIA M K, DUCHESNE P N, WANG L, MAO C L, ALI F M, YAN T J, LI P C, LU Z H, OZIN G A. Enhanced CO2 photocatalysis by indium oxide hydroxide supported on TiN@TiO2 nanotubes[J]. Nano Lett., 2021,21(3):1311-1319. doi: 10.1021/acs.nanolett.0c04008
KIBRIA M G, EDWARDS J P, GABARDO C M, DINH C T, SEIFITOKALDANI A, SINTON D, SARGENT E H. Electrochemical CO2 reduction into chemical feedstocks: From mechanistic electrocatalysis models to system design[J]. Adv. Mater., 2019,311807166. doi: 10.1002/adma.201807166
VERMA S, LU S, KENIS P J A. Co-electrolysis of CO2 and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption[J]. Nat. Energy, 2019,4(6):466-474. doi: 10.1038/s41560-019-0374-6
LIN S, DIERCKS C S, ZHANG Y B, KORNIENKO N, NICHOLS E M, ZHAO Y B, PARIS A R, KIM D, YANG P, YAGHI O M, CHANG C J. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water[J]. Science, 2015,349(6253):1208-1213. doi: 10.1126/science.aac8343
ZHENG T T, LIU C X, GUO C X, ZHANG M L, LI X, JIANG Q, XUE W Q, LI H L, LI A, PAO C W, XIAO J P, XIA C, ZENG J. Copper-catalysed exclusive CO2 to pure formic acid conversion via singleatom alloying[J]. Nat. Nanotechnol., 2021,16(12):1386-1393. doi: 10.1038/s41565-021-00974-5
HU Q, HAN Z, WANG X D, LI G, WANG Z Y, HUANG X W, YANG H P, REN X Z, ZHANG Q L, LIU J H, HE C X. Facile synthesis of sub-nanometric copper clusters by double confinement enables selective reduction of carbon dioxide to methane[J]. Angew. Chem.-Int. Edit., 2020,59(43):19054-19059. doi: 10.1002/anie.202009277
DUANMU J W, WU Z Z, GAO F Y, YANG P P, NIU Z Z, ZHANG Y C, CHI L P, GAO M R. Investigation and mitigation of carbon deposition over copper catalyst during electrochemical CO2 reduction[J]. Precis. Chem., 2024,2(4):151-160. doi: 10.1021/prechem.4c00002
WANG Y N, YANG F, XU H M, JANG J, DELMO E P, QIU X, YING Z H, GAO P, ZHU S Q, GU M D, SHAO M H. The role of phase mixing degree in promoting C-C Coupling in electrochemical CO 2 reduction reaction on Cu-based catalysts[J]. Angew. Chem.-Int. Edit., 2024,63e202400952. doi: 10.1002/anie.202400952
YANG X Z, DING H W, LI S N, ZHENG S S, LI J F, PAN F. Cationinduced interfacial hydrophobic microenvironment promotes the C-C coupling in electrochemical CO2 reduction[J]. J. Am. Chem. Soc., 2024,146(8):5532-5542. doi: 10.1021/jacs.3c13602
ZHOU D D, ZHANG X W, MO Z W, XU Y Z, TIAN X Y, LI Y, CHEN X M, ZHANG J P. Adsorptive separation of carbon dioxide: From conventional porous materials to metal-organic frameworks[J]. EnergyChem, 2019,1100016. doi: 10.1016/j.enchem.2019.100016
CAO C S, MA D D, GU J F, XIE X Y, ZENG G, LI X F, HAN S G, ZHU Q L, WU X T, XU Q. Metal-organic layers leading to atomically thin bismuthene for efficient carbon dioxide electroreduction to liquid fuel[J]. Angew. Chem.-Int. Edit., 2020,59(35):15014-15020. doi: 10.1002/anie.202005577
CUI Y J, YUE Y F, QIAN G D, CHEN B L. Luminescent functional metal-organic frameworks[J]. Chem. Rev., 2011,112(2):1126-1162.
YOON M, SUH K, NATARAJAN S, KIM K. Proton conduction in metal-organic frameworks and related modularly built porous solids[J]. Angew. Chem.-Int. Edit., 2013,52(10):2688-2700. doi: 10.1002/anie.201206410
KRENO L E, LEONG K, FARHA O K, ALLENDORF M, VAN DUYNE R P, HUPP J T. Metal organic framework materials as chemical sensors[J]. Chem. Rev., 2011,112(2):1105-1125.
LIU D D, MA H R, ZHU C, QIU F Y, YU W B, MA L L, WEI X W, HAN Y F, YUAN G Z. Molecular co catalyst confined within a metallacage for enhanced photocatalytic CO2 reduction[J]. J. Am. Chem. Soc., 2024,146(3):2275-2285. doi: 10.1021/jacs.3c14254
CHEN T T, WANG F F, CAO S, BAI Y, ZHENG S S, LI W, ZHANG S T, HU S X, PANG H. In situ synthesis of MOF-74 family for high areal energy density of aqueous nickel-zinc batteries[J]. Adv. Mater., 2022,34(30)2201779. doi: 10.1002/adma.202201779
LIU C L, BAI Y, LI W T, YANG F Y, ZHANG G X, PANG H. In situ growth of three dimensional MXene/metal organic framework composites for high-performance supercapacitors[J]. Angew. Chem.-Int. Edit., 2022,61(11)e202116282. doi: 10.1002/anie.202116282
ZHENG S S, SUN Y, XUE H G, BRAUNSTEIN P, HUANG W, PANG H. Dual-ligand and hard-soft-acid-base strategies to optimize metal-organic framework nanocrystals for stable electrochemical cycling performance[J]. Natl. Sci. Rev., 2022,9(7)nwab197. doi: 10.1093/nsr/nwab197
SUN Y Y, JI H Q, SUN Y J, ZHANG G X, ZHOU H J, CAO S, LIU S X, ZHANG L, LI W, ZHU X W, PANG H. Synergistic effect of oxygen vacancy and high porosity of nano MIL 125(Ti) for enhanced photocatalytic nitrogen fixation[J]. Angew. Chem.-Int. Edit., 2024,6(3)e202316973.
LI X F, ZHU Q L. MOF-based materials for photoand electrocatalytic CO2 reduction[J]. EnergyChem, 2020,2100033. doi: 10.1016/j.enchem.2020.100033
PENG H J, TANG M T, HALLDIN STENLID J, LIU X Y, ABILD-PEDERSEN F. Trends in oxygenate/hydrocarbon selectivity for electrochemical CO2 reduction to C2 products[J]. Nat. Commun., 2022,13(1)1399. doi: 10.1038/s41467-022-29140-8
CLARK E L, WONG J, GARZA A J, LIN Z, HEAD-GORDON M, BELL A T. Explaining the incorporation of oxygen derived from solvent water into the oxygenated products of CO reduction over Cu[J]. J. Am. Chem. Soc., 2019,141(10):4191-4193. doi: 10.1021/jacs.8b13201
HWANG J, RAO R R, GIORDANO L, KATAYAMA Y, YU Y, SHAO-HORN Y. Perovskites in catalysis and electrocatalysis[J]. Science, 2017,358(6364):751-756. doi: 10.1126/science.aam7092
ZHOU H, KOUHNAVARD M, JUNG S, MISHRA R, BISWAS P. One-step aerosol synthesis of a double perovskite oxide (KBaTeBiO6) as a potential catalyst for CO2 photoreduction[J]. Nanoscale, 2021,13(27):11963-11975. doi: 10.1039/D1NR01505B
ZHU J J, LI H L, ZHONG L Y, XIAO P, XU X L, YANG X G, ZHAO Z, LI J L. Perovskite oxides: Preparation, characterizations, and applications in heterogeneous catalysis[J]. ACS Catal., 2014,4(9):2917-2940. doi: 10.1021/cs500606g
LIU Q Y, ZHU Y M, HE Z Y, JIN S G, CHEN Y. A facile top-down approach for constructing perovskite oxide nanostructure with abundant oxygen defects as highly efficient water oxidation electrocatalyst[J]. Int. J. Hydrog. Energy, 2020,45(43):22808-22816. doi: 10.1016/j.ijhydene.2020.06.137
JIN C, CAO X C, ZHANG L Y, ZHANG C, YANG R Z. Preparation and electrochemical properties of urchin-like La0.8Sr0.2MnO3 perovskite oxide as a bifunctional catalyst for oxygen reduction and oxygen evolution reaction[J]. J. Power Sources, 2013,241:225-230. doi: 10.1016/j.jpowsour.2013.04.116
ZHANG H Y, XU Y, LU M, XIE X J, HUANG L. Perovskite oxides for cathodic electrocatalysis of energy-related gases: From O2 to CO2 and N 2[J]. Adv. Funct. Mater., 2021,312101872. doi: 10.1002/adfm.202101872
WANG F F, SUN W Y. Cu MOF and CuBi double-perovskite composites for selective CO2 electroreduction to HCOOH[J]. ACS Sustain. Chem. Eng., 2024,12:15651-15658. doi: 10.1021/acssuschemeng.4c06093
HE H Y, DAI F N, XIE A P, TONG X, SUN D F. Three novel 3D metal-organic frameworks with a 1D ladder, tube or chain as assembly units[J]. CrystEngComm, 2008,10(10):1429-1435. doi: 10.1039/b808373h
WEN C F, ZHOU M, LIU P F, LIU Y W, WU X F, MAO F X, DAI S, XU B B, WANG X L, JIANG Z, HU P, YANG S, WANG H F, YANG H G. Highly ethylene selective electrocatalytic CO2 reduction enabled by isolated Cu S Motifs in metal organic framework based precatalysts[J]. Angew. Chem.-Int. Edit., 2021,61e202111700.
CHEN Y R. Study on preparation of copper-bismuth bimetallic catalysts and their electrocatalytic performance on CO2 reduction[D]. Beijing: Beijing University of Chemical Technology, 2022.
LOU W S, PENG L W, HE R N, LIU Y Y, QIAO J L. CuBi electrocatalysts modulated to grow on derived copper foam for efficient CO2-toformate conversion[J]. J. Colloid Interface Sci., 2022,606:994-1003. doi: 10.1016/j.jcis.2021.08.080
ZHANG Z R, LIU W H, ZHANG W, LIU M M, HUO S J. Interface interaction in CuBi catalysts with tunable product selectivity for electrochemical CO 2 reduction reaction[J]. Colloids Surf. A, 2021,631127637. doi: 10.1016/j.colsurfa.2021.127637
YANG S Y, WANG H Z, XIONG Y, ZHU M F, SUN J J, JIANG M H, ZHANG P B, WEI J, XING Y Z, TIE Z X, JIN Z. Ultrafast thermal shock synthesis and porosity engineering of 3D hierarchical Cu-Bi nanofoam electrodes for highly selective electrochemical CO2 reduction[J]. Nano Lett., 2023,23(22):10140-10147. doi: 10.1021/acs.nanolett.3c02380
KANG J X, CHEN X Y, SI R T, GAO X, ZHANG S, TEOBALDI G, SELLONI A, LIU L M, GUO L. Activating Bi p-orbitals in dispersed clusters of amorphous BiOx for electrocatalytic nitrogen reduction[J]. Angew. Chem.-Int. Edit., 2023,62e202217428. doi: 10.1002/anie.202217428
XIA S, WU F X, LIU Q X, GAO W P, GUO C P, WEI H L, HUSSAIN A, ZHANG Y, XU G B, NIU W X. Steering the selective production of glycolic acid by electrocatalytic oxidation of ethylene glycol with nanoengineered PdBi-based heterodimers[J]. Small, 2024,20(34)2400939. doi: 10.1002/smll.202400939
LIU K, MA M, WU L F, VALENTI M, CARDENAS-MORCOSO D, HOFMANN J P, BISQUERT J, GIMENEZ S, SMITH W A. Electronic effects determine the selectivity of planar Au-Cu bimetallic thin films for electrochemical CO 2 reduction[J]. ACS Appl. Mater. Interfaces, 2019,11(18):16546-16555. doi: 10.1021/acsami.9b01553
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Xianghai Song , Xiaoying Liu , Zhixiang Ren , Xiang Liu , Mei Wang , Yuanfeng Wu , Weiqiang Zhou , Zhi Zhu , Pengwei Huo . 氮掺杂显著提升BiOBr光催化还原CO2性能研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
Xueting Cao , Shuangshuang Cha , Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
Jianchun Wang , Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
Mengzhen JIANG , Qian WANG , Junfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201