Citation: Jimin HOU, Mengyang LI, Chunhua GONG, Shaozhuang ZHANG, Caihong ZHAN, Hao XU, Jingli XIE. Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348 shu

Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid

Figures(11)

  • (2E, 6E)-4-methyl-2, 6-bis(pyridin-3-ylmethylene)cyclohexan-1-one (L1) and 4-methyl-2, 6-bis[(E)-4-(pyridin-4-yl)benzylidene]cyclohexan-1-one (L2) were synthesized and combined with isophthalic acid (H2IP), then under solvothermal conditions, to react with transition metals achieving four novel metal organic frameworks (MOFs): [Zn(IP)(L1)]n (1), {[Cd(IP)(L1)]·H2O}n (2), {[Co(IP)(L1)]·H2O}n (3), and [Zn(IP)(L2)(H2O)]n (4). MOFs 1-4 have been characterized by single-crystal X-ray diffraction, powder X-ray diffraction, thermogravimetry, and elemental analysis. Single-crystal X-ray diffraction shows that MOF 1 crystallizes in the monoclinic crystal system with space group P21/n, and MOFs 2-4 belong to the triclinic system with the P1 space group. 1-3 are 2D sheet structures, 2 and 3 have similar structural characters, whereas 4 is a 1D chain structure. Furthermore, 1-3 exhibited certain photocatalytic capability in the degradation of rhodamine B (RhB) and pararosaniline hydrochloride (PH). 4 could be used as a heterogeneous catalyst for the Knoevenagel reaction starting with benzaldehyde derivative and malononitrile. 4 could promote the reaction to achieve corresponding products in moderate yields within 3 h. Moreover, the catalyst exhibited recyclability for up to three cycles without significantly dropping its activity. A mechanism for MOF 4 catalyzed Knoevenagel condensation reaction of aromatic aldehyde and malononitrile has been initially proposed.
  • 加载中
    1. [1]

      HUANG H P, CHEN Y A, CHEN Z Z, CHEN J L, HU Y M, ZHU J J. Electrochemical sensor based on Ce-MOF/carbon nanotube composite for the simultaneous discrimination of hydroquinone and catechol[J]. J. Hazard. Mater., 2021,416(5)125895.  

    2. [2]

      CAO Y, WANG L N, SHEN C, WANG C Y, HU X Y, WANG G X. An electrochemical sensor on the hierarchically porous Cu-BTC MOF platform for glyphosate determination[J]. Sens. Actuator B-Chem., 2019,283:487-494. doi: 10.1016/j.snb.2018.12.064

    3. [3]

      CORMAN M E, OZCELIKAY G, CETINKAYA A, KAYA S I, ARMUTCU C, OZGUR E, UZUN L, OZKAN S A. Metal-organic frameworks as an alternative smart sensing platform for designing molecularly imprinted electrochemical sensors[J]. Trends Anal. Chem., 2022,150116573. doi: 10.1016/j.trac.2022.116573

    4. [4]

      ZHANG F, ZOU X Q, FENG W, ZHAO X J, JING X F, SUN F X, REN H, ZHU G S. Microwave-assisted crystallization inclusion of spiropyran molecules in indium trimesate films with antidromic reversible photochromism[J]. J. Mater. Chem., 2012,22(48):25019-25026. doi: 10.1039/c2jm34618d

    5. [5]

      SUN T C, FAN R Q, ZHANG J, QIN M Y, CHEN W, JIANG X, ZHU K, JI C S, HAO S, YANG Y L. Stimuli-responsive metal-organic framework on a metal-organic framework heterostructure for efficient antibiotic detection and anticounterfeiting[J]. ACS Appl. Mater. Interfaces, 2020,13(30):35689-35699.

    6. [6]

      LIU Y, LI H L, LIU J. Theoretical prediction the removal of mercury from flue gas by MOFs[J]. Fuel, 2016,184:474-480. doi: 10.1016/j.fuel.2016.07.033

    7. [7]

      ZEINALI S, HOMAYOONNIA S, HOMAYOONNIA G. Comparative investigation of interdigitated and parallel-plate capacitive gas sensors based on Cu-BTC nanoparticles for selective detection of polar and apolar VOCs indoors[J]. Sens. Actuator B-Chem., 2018,278:153-164.

    8. [8]

      TAO W, ZHONG H, PAN X B, WANG P, WANG H Y, HUANG L. Removal of fluoride from wastewater solution using Ce-AlOOH with oxalic acid as modification[J]. J. Hazard. Mater., 2020,384121373. doi: 10.1016/j.jhazmat.2019.121373

    9. [9]

      CHEN H, YANG J, SUN L, ZHANG H R, GUO Y S, QU J, JIANG W Y, CHEN W, JI J, YANG Y W, WANG B L. Synergistic chemotherapy and photodynamic therapy of endophthalmitis mediated by zeolitic imidazolate framework-based drug delivery systems[J]. Small, 2019,15(47)1903880. doi: 10.1002/smll.201903880

    10. [10]

      ABAZARI R, MAHJOUB A R, ATAEI F, MORSALI A, CARPENTER-WARREN C L, MEHDIZADEH K, SLAWIN AMZ. Chitosan immobilization on Bio-MOF nanostructures: A biocompatible pH-responsive nanocarrier for doxorubicin release on MCF-7 cell lines of human breast cancer[J]. Inorg. Chem., 2018,57(21):13364-13379. doi: 10.1021/acs.inorgchem.8b01955

    11. [11]

      LI H L, EDDAOUDI M, O'KEEFFE M, YAGHI O M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999,402:276-279. doi: 10.1038/46248

    12. [12]

      CHEN Y Q, LI G R, CHANG Z, QU Y K, ZHANG Y H, BU X H. A Cu(Ⅰ)metal-organic framework with 4-fold helical channels for sensing anions[J]. Chem. Sci., 2013,4:3678-3682. doi: 10.1039/c3sc00057e

    13. [13]

      KIM J, CHEN B, REINEKE T M, LI H, EDDAOUDI M, MOLER D B, O'KEEFFE M, YAGHI O M. Assembly of metal-organic frameworks from large organic and inorganic secondary building units: New examples and simplifying principles for complex structures[J]. J. Am. Chem. Soc., 2001,123:8239-8247. doi: 10.1021/ja010825o

    14. [14]

      FANG S M, HU M, JIA L R, WANG C, ZHANG Q, MA S T, DU M, LIU C S. Highly-thermostable lanthanide-organic coordination frameworks with N-protonated 2, 6-dihydroxypyridine-4-carboxylate exhibiting unusual 3D mixed-connected network topology[J]. CrystEngComm, 2011,13(21):6555-6563. doi: 10.1039/c1ce05465a

    15. [15]

      DU M, LI C P, LIU C S, FANG S M. Design and construction of coordination polymers with mixed-ligand synthetic strategy[J]. Coord. Chem. Rev., 2013,257:1282-1305. doi: 10.1016/j.ccr.2012.10.002

    16. [16]

      CAO Y Z, PAN W, ZHOU C J, ZHANG J Y, XU H, GONG CH H, SHEN R B, LIU S J, XIE J L. A series of metal-organic frameworks based on mixed ligand strategy: Synthesis, structures, and properties[J]. Chinese J. Inorg. Chem., 2022, 38(11): 2143-2153

    17. [17]

      CHENG L M, ZHANG J Y, ZHAN C H, XU H, GONG C H, XIE J L. Metal-organic frameworks constructed using acid-base mixed ligands, carboxylic acids and N-containing chalcone, and their catalytic performance for Knoevenagel condensation[J]. New. J. Chem., 2024,48(19):8597-8602. doi: 10.1039/D3NJ05164A

    18. [18]

      LEE J, FARHA O K, ROBERTS J, SCHEIDT K A, NGUYEN S T, HUPP J T. Metal-organic framework materials as catalysts[J]. Chem. Soc. Rev., 2009,38(5):1450-1459. doi: 10.1039/b807080f

    19. [19]

      GUO C Y, ZHANG Y H, ZHANG L, ZHANG Y, WANG J D. 2-Methylimidazole-assisted synthesis of a two-dimensional MOF-5 catalyst with enhanced catalytic activity for the Knoevenagel condensation reaction[J]. CrystEngComm, 2018,20(36):5327-5331. doi: 10.1039/C8CE00954F

    20. [20]

      TRAN U P N, LE K K A, PHAN N T S. Expanding applications of metal-organic frameworks: Zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the Knoevenagel reaction[J]. ACS Catal., 2011,1(2):120-127. doi: 10.1021/cs1000625

    21. [21]

      WU D, CHEN J X, TU D Y, ZHUANG Y C, SHEN L. L-proline functionalized pillar-layered MOF as a heterogeneous catalyst for aldol addition reaction[J]. Inorg. Chem. Commun., 2021,119108052.

    22. [22]

      GHOSH S, NAGARJUN N, ALAM M, DHAKSHINAMOORTHY A, BISWAS S. Friedel-Crafts alkylation reaction efficiently catalyzed by a di-amide functionalized Zr(Ⅳ)metal-organic framework[J]. Mol. Catal., 2021,517112007.

    23. [23]

      MARTIN C R, PARK K C, LEITH G A, YU J R, MATHUR A, WILSON G R, GANGE G B, BARTH EL, LY R T, MANLEY O M, FORRESTER K L, KARAKALOS S G, SMITH M D, MAKRIS T M, VANNUCCI A K, PERYSHKOV D V, SHUSTOVA N B. Stimulimodulated metal oxidation states in photochromic MOFs[J]. J. Am. Chem. Soc., 2022,144(10):4457-4468. doi: 10.1021/jacs.1c11984

    24. [24]

      HAO L D, STOIAN S A, WEDDLE L R, ZHANG Q. Zr-based MOFs for oxidative desulfurization: What matters[J]. Green Chem., 2020,22(19):6351-6356. doi: 10.1039/D0GC01999B

    25. [25]

      SHALINI S, MATZGER A J. Ethylene oxide functionalization enhances the ionic conductivity of a MOF[J]. Chem. Commun., 2022,58(35):5355-5358. doi: 10.1039/D2CC01286C

    26. [26]

      JAMIL U, KHOJA A H, LIAQUAT R, NAQVI S R, OMAR W N N W, AMIN N A S. Copper and calcium-based metal-organic framework (MOF) catalyst for biodiesel production from waste cooking oil: A process optimization study[J]. Energy Convers. Manag., 2020,215112934. doi: 10.1016/j.enconman.2020.112934

    27. [27]

      CHEN J Z, LIU R L, GAO H, CHEN L M, YE Q. Amine-functionalized metal-organic frameworks for the transesterification of triglycerides[J]. J. Mater. Chem. A, 2014,2(20):7205-7213. doi: 10.1039/C4TA00253A

    28. [28]

      FREEMAN F. Properties and reactions of ylidenemalononitriles[J]. Chem. Rev., 1980,80(4):329-350. doi: 10.1021/cr60326a004

    29. [29]

      TIETZE L F. Domino reactions in organic synthesis[J]. Chem. Rev., 1996,96(1):115-136. doi: 10.1021/cr950027e

    30. [30]

      PALATINUS L, CHAPUIS G. SUPERFLIP-A computer program for the solution of crystal structures by charge flipping in arbitrary dimensions[J]. J. Appl. Crystallogr., 2007,40(4):786-790. doi: 10.1107/S0021889807029238

    31. [31]

      DOLOMANOV O V, BOURHIS L J, GILDEA R J, HOWARD J A K, PUSCHMANN H. OLEX2: A complete structure solution, refinement and analysis program[J]. J. Appl. Crystallogr., 2009,42(2):339-341. doi: 10.1107/S0021889808042726

    32. [32]

      RAMALINGAM G, PACHAIAPPAN R, KUMAR P S, DHARANI S, RAJENDRAN S, VO D N, HOANG T K A. Hybrid metal organic frameworks as an exotic material for the photocatalytic degradation of pollutants present in wastewater: A review[J]. Chemosphere, 2022,288(2)132448.

    33. [33]

      MANSOURI G, ABDIZAD M, ABBASI A R, REZAYATI S. Efficient and green one-pot synthesis of Knoevenagel condensation catalyzed nano metal-organic frameworks in water[J]. Appl. Organomet. Chem., 2022,36e6866. doi: 10.1002/aoc.6866

    34. [34]

      ZUO W G, YANG S B, XING Y J, XIAO X W, FAN D N, LI H Y, WANG G Q, QIN B, YOU S, JIA X. Amorphous zirconium metal-organic frameworks assembled from mixed porphyrins as solvent-free catalysts for Knoevenagel condensation[J]. Dalton Trans., 2022,51(17):6631-6637. doi: 10.1039/D2DT00142J

    35. [35]

      HUANG G Q, CHEN J, HUANG Y L, WU K, LUO D, JIN J K, ZHENG J, XU S H, LU W G. Mixed-linker isoreticular Zn(Ⅱ)metal-organic frameworks as Brønsted acid-base bifunctional catalysts for Knoevenagel condensation reactions[J]. Inorg. Chem., 2022,62(21):8339-8348.

    36. [36]

      SADJADI S, KOOHESTANI F, HERAVI M M. A novel composite of ionic liquid-containing polymer and metal-organic framework as an efficient catalyst for ultrasonic-assisted Knoevenagel condensation[J]. Sci. Rep., 2022,12(1)1122. doi: 10.1038/s41598-022-05134-w

    37. [37]

      YAO Y, HUANG K X, LIU Y, LUO T T, TIAN G, LI J X, ZHANG S, CHANG G G, YANG X Y. A hierarchically multifunctional integrated catalyst with intimate and synergistic active sites for one-pot tandem catalysis[J]. Inorg. Chem. Front., 2021,8(14):3463-3472. doi: 10.1039/D1QI00170A

    38. [38]

      KARIMI M, SADEGHI S, MOHEBALI H, BAKHTI H, MAHJOUB A, HEYDARI A. Confined-based catalyst investigation through the comparative functionalization and defunctionalization of Zr-MOF[J]. RSC Adv., 2022,12(26):16358-16368. doi: 10.1039/D1RA07767H

    39. [39]

      GANDHI S, SHARMA V, KOUL I S, MANDAL S K. Shedding light on the Lewis acid catalysis in organic transformations using a Zn-MOF microflower and its ZnO nanorod[J]. Catal. Lett., 2022,153(2):887-902.

    40. [40]

      ZANON A, CHAEMCHUEN S, VERPOORT F. Zn@ZIF-67 as catalysts for the Knoevenagel condensation of aldehyde derivatives with malononitrile[J]. Catal. Lett., 2017,147(9):2410-2420. doi: 10.1007/s10562-017-2153-y

    41. [41]

      FRANKE K N, RIBEIRO M E, CARDOSO D. Zeolitic imidazolate frameworks containing Zn as catalysts for the Knoevenagel condensation reaction[J]. Braz. J. Chem. Eng., 2021,39(4):961-971.

    42. [42]

      NEOGI S, SHARMA M K, BHARADWAJ P K. Knoevenagel condensation and cyanosilylation reactions catalyzed by a MOF containing coordinatively unsaturated Zn(Ⅱ) centers[J]. J. Mol. Catal. A Chem., 2008,299(2):1-4.

    43. [43]

      ALMASI M, ZELENAK V, OPANASENKO M, CEJKA J. A novel nickel metal-organic framework with fluorite-like structure: Gas adsorption properties and catalytic activity in Knoevenagel condensation[J]. Dalton Trans., 2014,43(9):3730-3738. doi: 10.1039/c3dt52698d

    44. [44]

      SEAL N, NEOGI S. Lewis acid-base integrated robust metal-organic framework and reconfigurable composite for solvent-free Biginelli condensation and tandem catalysis with size selectivity[J]. Mater. Today Chem., 2022,26101064. doi: 10.1016/j.mtchem.2022.101064

  • 加载中
    1. [1]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    2. [2]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    3. [3]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    4. [4]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    5. [5]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    6. [6]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    7. [7]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    8. [8]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    9. [9]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    10. [10]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    11. [11]

      Genlin SunYachun LuoZhihong YanHongdeng QiuWeiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787

    12. [12]

      Guoying Han Qazi Mohammad Junaid Xiao Feng . Topology-driven directed synthesis of metal-organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100447-100447. doi: 10.1016/j.cjsc.2024.100447

    13. [13]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    14. [14]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    15. [15]

      Sixiao LiuTianyi WangLei ZhangChengyin WangHuan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058

    16. [16]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    17. [17]

      Teng WangJiachun CaoJuan LiDidi LiZhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078

    18. [18]

      Cheng-Shuang WangBing-Yu ZhouYi-Feng WangCheng YuanBo-Han KouWei-Wei ZhaoJing-Juan Xu . Bifunctional iron-porphyrin metal-organic frameworks for organic photoelectrochemical transistor gating and biosensing. Chinese Chemical Letters, 2025, 36(3): 110080-. doi: 10.1016/j.cclet.2024.110080

    19. [19]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    20. [20]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

Metrics
  • PDF Downloads(0)
  • Abstract views(157)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return