Citation: Qinjin DAI, Shan FAN, Pengyang FAN, Xiaoying ZHENG, Wei DONG, Mengxue WANG, Yong ZHANG. Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326 shu

Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery

Figures(7)

  • V-doped MnO2 (VMO) was prepared as the aqueous zinc ion battery (ZIB) cathode by a simple hydrothermal method and its electrochemical performance was tested. The material characterization and electrochemical performance test indicated that the bismuth was evenly incorporated into MnO2. V doping expanded the interlayer spacing of MnO2, increased the specific surface area, and improved its internal ionic conductivity. The initial discharge capacity of the assembled ZIB reached 362 mAh·g-1 at a current density of 0.1 A·g-1. The doping of V made the lattice structure of MnO2 more stable, weakened the Jahn-Teller distortion effect, and improved the structural stability of the electrode material. The specific capacity remained 87% of the initial stage after 300 cycles at a 1 A·g-1 current density.
  • 加载中
    1. [1]

      JIA X X, LIU C F, NEALE Z G, YANG J H, YANG J H, CAO G Z. Active materials for aqueous zinc ion batteries: Synthesis, crystal structure, morphology, and electrochemistry[J]. Chem. Rev., 2020,120(15):7795-7866. doi: 10.1021/acs.chemrev.9b00628

    2. [2]

      MING J, GUO J, XIA C, WANG W X, ALSHAREEF H N. Zinc-ion batteries: Materials, mechanisms, and applications[J]. Mater. Sci. Eng. R-Rep., 2019,135:58-84. doi: 10.1016/j.mser.2018.10.002

    3. [3]

      LI H F, MA L T, HAN C P, WANG Z F, LIU Z X, TANG Z J, ZHI C Y. Advanced rechargeable zinc-based batteries: Recent progress and future perspectives[J]. Nano Energy, 2019,62:550-587. doi: 10.1016/j.nanoen.2019.05.059

    4. [4]

      XU C J, Li B H, Du H D, KANG F Y. Energetic zinc ion chemistry: The rechargeable zinc ion battery[J]. Angew. Chem.-Int. Edit., 2012,51(4):933-935. doi: 10.1002/anie.201106307

    5. [5]

      HUANG J D, ZENG J, ZHU K J, ZHANG R Z, LIU J. High-performance aqueous zinc manganese battery with reversible Mn2+/Mn4+ double redox achieved by carbon coated MnOx nanoparticles[J]. Nano-Micro Lett., 2020,12:1-12. doi: 10.1007/s40820-019-0337-2

    6. [6]

      ZHANG T S, TANG Y, GUO S, CAO X X, PAN A Q, FANG G Z, ZHOU J, LIANG S Q. Fundamentals and perspectives in developing zinc ion battery electrolytes: A comprehensive review[J]. Energy Environ. Sci., 2020,13(12):4625-4665. doi: 10.1039/D0EE02620D

    7. [7]

      YUAN G Q, SU Y C, ZHANG X G, DAO B, HU J L, SUN Y Y, LI W T, ZHANG Z, SHAKOURI M, PANG H. Charged organic ligands inserting/supporting the nanolayer spacing of vanadium oxides for high-stability/efficiency zinc-ion batteries[J]. Natl. Sci. Rev., 2024,11(10)nwae336. doi: 10.1093/nsr/nwae336

    8. [8]

      SHI Y X, YANG B, SONG G J, CHEN Z D, SHAKOURI M, ZHOU W F, ZHANG X X, YUAN G Q, PANG H. Ambient synthesis of vanadiumbased Prussian blue analogues nanocubes for highperformance and durable aqueous zinc ion batteries with eutectic electrolytes[J]. Angew. Chem.-Int. Edit., 2024,63(45)e202411579. doi: 10.1002/anie.202411579

    9. [9]

      MA K X, LI Q, HONG C, YANG G Z, WANG C G. Bi dopingenhanced reversible phase transition of α MnO2 raising the cycle capability of aqueous Zn-Mn batteries[J]. ACS Appl. Mater. Interfaces, 2021,13(46):55208-55217. doi: 10.1021/acsami.1c17677

    10. [10]

      ALFARUQI M H, GIM J, KIM S, SONG J J, JO J G, KIM J, MATHEW V, KIM J. Enhanced reversible divalent zinc storage in a structurally stable MnO2 nanorod electrode[J]. J. Power Sources, 2015,288:320-327. doi: 10.1016/j.jpowsour.2015.04.140

    11. [11]

      ALFARUQI M H, MATHEW V, GIM J, KIM S, SONG J J, BABOO J P, CHOI S H, KIM J. Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system[J]. Chem. Mater., 2015,27(10):3609-3620. doi: 10.1021/cm504717p

    12. [12]

      ZENG J, ZHANG Z H, CHEN Y, CHEN X B, HE H B, WANG J X. Sodium potassium co doped layered manganese dioxide cathode material for high performance aqueous zinc-ion batteries[J]. J. Electroanal Chem., 2023,934117306. doi: 10.1016/j.jelechem.2023.117306

    13. [13]

      ZHANG M S, WU W X, LUO J W, ZHANG H Z, LIU J, LIU X Q, YANG Y Y, LU X H. A high-energy-density aqueous zinc-manganese battery with a La-Ca codoped ε-MnO2 cathode[J]. J. Mater. Chem. A, 2020,8(23):11642-11648. doi: 10.1039/D0TA03706K

    14. [14]

      WEI Z, WANG W C, LI W L, BAI X Q, ZHAO J F, TSE E C, PHILLIPS D L, ZHU Y F. Steering electron-hole migration pathways using oxygen vacancies in tungsten oxides to enhance their photocatalytic oxygen evolution performance[J]. Angew. Chem. - Int. Edit., 2021,60(15):8236-8242. doi: 10.1002/anie.202016170

    15. [15]

      WANG J J, WANG J G, LIU H Y, WEI C G, KANG F Y. Zinc ion stabilized MnO2 nanospheres for high capacity and long lifespan aqueous zinc-ion batteries[J]. J. Mater. Chem. A, 2019,7(22):13727-13735. doi: 10.1039/C9TA03541A

    16. [16]

      LONG J, GU J X, YANG Z H, MAO J F, HAO J N, CHEN Z F, GUO Z P. Highly porous, low band gap NixMn3-xO4(0.55≤x≤1.2) spinel nanoparticles with in situ coated carbon as advanced cathode materials for zinc-ion batteries[J]. J. Mater. Chem. A, 2019,7(30)1785417866.  

    17. [17]

      ZHANG N, CHENG F Y, LIU J X, WANG L B, LONG X H, LIU X S, LI F J, CHEN J. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities[J]. Nat. Commun., 2017,8(1):405-414. doi: 10.1038/s41467-017-00467-x

    18. [18]

      ZHANG N, CHEN X Y, YU M, NIU Z Q, CHENG F Y, CHENG J. Materials chemistry for rechargeable zinc-ion batteries[J]. Chem. Soc. Rev., 2020,49(13):4203-4219. doi: 10.1039/C9CS00349E

    19. [19]

      MATHEW V, SAMBANDAM B, KIM S, KIM S, PARK S, LEE S, ALFARUQI M H, SOUNDHARRAJAN V, LSLAM S, PUTRO D U, HWANG J Y, SUN Y K, KIM J. Manganese and vanadium oxide cathodes for aqueous rechargeable zinc-ion batteries: A focused view on performance, mechanism, and developments[J]. ACS Energy Lett., 2020,5(7):2376-2400. doi: 10.1021/acsenergylett.0c00740

    20. [20]

      LIU C, CHI X W, HAN Q, LIU Y. A high energy density aqueous battery achieved by dual dissolution/deposition reactions separated in acid-alkaline electrolyte[J]. Adv. EnergyMater., 2020,10(12)1903589.  

    21. [21]

      GAO X, WU H W, LI W J, TIAN Y, ZHANG Y, WU H, YANG L, ZOU G Q, HOU H S, JI X B. H+-insertion boosted α-MnO2 for an aqueous Zn-ion battery[J]. Small, 2020,16(5)1905842. doi: 10.1002/smll.201905842

    22. [22]

      RAJABI R, SUN S C, BILLINGS A, MATTICK V F, KHAN J, HUANG K. Insights into chemical and electrochemical interactions between Zn anode and electrolytes in aqueous Zn-ion batteries[J]. J. Electrochem. Soc., 2022,169(11)110536. doi: 10.1149/1945-7111/aca2e7

    23. [23]

      WU J D, YANG L Y, WANG S Y, YAO X L, WANG J, ABLIZ A, XIE X F, MI H Y, LI H B. Zinc ion modulation of hydrated vanadium pentoxide for high-performance aqueous zinc ion batteries[J]. J. Power Sources, 2024,595234057. doi: 10.1016/j.jpowsour.2024.234057

    24. [24]

      YU B Z, LU L L, HE Y T, DAI X, WANG Y, WANG T, CHONG S K, LIU L T, LIU Y N, TAN Q. Hierarchical porous CS@Ce-MnO2 as cathode for energy-dense and long-cycling flexible aqueous zinc-ion batteries[J]. J. Colloid Interface Sci., 2024,654:56-65. doi: 10.1016/j.jcis.2023.10.009

    25. [25]

      CHEN M F, CHEN J Z, ZHOU W J, HAN X, YAO Y G, WONG C P. Realizing an all-round hydrogel electrolyte toward environmentally adaptive dendrite-free aqueous Zn-MnO2 batteries[J]. Adv. Mater., 2021,33(9)2007559. doi: 10.1002/adma.202007559

    26. [26]

      ZHANG Y A, LIU Y P, LIU Z H, WU X G, WEN Y X, CHEN H D, NI X, LIU G H, HUANG J J, PENG S L. MnO2 cathode materials with the improved stability via nitrogen doping for aqueous zinc-ion batteries[J]. J. Energy Chem., 2022,64:23-32. doi: 10.1016/j.jechem.2021.04.046

    27. [27]

      QIU C, LIU J, LIU H H, ZHU X H, XUE L, LI S, NI M Z, ZHAO Y, WANG T, SAVILOV S V, ALDOSHIN S M, XIA H. Suppressed layered-to-spinel phase transition in δ-MnO2 via van der Waals interaction for highly stable Zn/MnO2 batteries[J]. Small Methods, 2022,6(12)2201142. doi: 10.1002/smtd.202201142

    28. [28]

      ZHANG Y, DENG S J, LI Y H, LIU B, PAN G X, LIU Q, WANG X L, XIA X H, TU J P. Anchoring MnO2 on nitrogen-doped porous carbon nanosheets as flexible arrays cathodes for advanced rechargeable Zn-MnO2 batteries[J]. Energy Storage Mater., 2020,29:52-59. doi: 10.1016/j.ensm.2020.04.003

    29. [29]

      YANG S H, ZHANG L, LUO M J, CUI Y W, WANG J Q, ZHAO D G, YANG C, WANG X T, CAO B Q. Synergistic combination of a Codoped σ-MnO2 cathode with an electrolyte additive for a high-performance aqueous zinc-ion battery[J]. ChemPhysChem, 2023,2(1):77-82.  

    30. [30]

      WANG S, YUAN Z S, ZHANG X, BI S S, ZH OU, S S, ZHOU Z, TIAN J L, ZHANG Q C, NIU Z Q. Non-metal ion co-insertion chemistry in aqueous Zn/MnO2 batteries[J]. Angew. Chem.-Int. Ed., 2021,60:7056-7060. doi: 10.1002/anie.202017098

    31. [31]

      ZHANG Y, DENG S J, LUO M, PAN G X, ZENG Y X, LU X H, AI C Z, LIU Q, XIONG Q J, WANG X L, XIA X H, TU J P. Defect promoted capacity and durability of N-MnO2-x branch arrays via lowtemperature NH3 treatment for advanced aqueous zinc ion batteries[J]. Small, 2019,15(47)1905452. doi: 10.1002/smll.201905452

  • 加载中
    1. [1]

      Shilong LiMing ZhaoYefei XuZhanyi LiuMian LiQing HuangXiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701

    2. [2]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    3. [3]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    4. [4]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    5. [5]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    6. [6]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    7. [7]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    8. [8]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    9. [9]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    10. [10]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    11. [11]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    12. [12]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    13. [13]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    14. [14]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    15. [15]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    16. [16]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    17. [17]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    18. [18]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

    19. [19]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    20. [20]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

Metrics
  • PDF Downloads(1)
  • Abstract views(240)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return