Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance
- Corresponding author: Wenjun ZHOU, zhwj84@126.com Kun CAO, kevin_cao0811@126.com
Citation:
Haoying ZHAI, Lanzong WEN, Wenjie LIAO, Qin LI, Wenjun ZHOU, Kun CAO. Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(5): 1037-1048.
doi:
10.11862/CJIC.20240320
FANG M, GAO X T, LIANG J, GUO B A, ZOU L, LU J, GAO Y, TSE E C M, LIU J X. Bioinspired NiFe-gallate metal-organic frameworks for highly efficient oxygen evolution electrocatalysis[J]. J. Mater. Chem. A, 2022,10(13):7013-7019. doi: 10.1039/D2TA01293F
RUI K, ZHAO G Q, CHEN Y P, LIN Y, ZHOU Q, CHEN J Y, ZHU J X, SUN W P, HUANG W, DOU S X. Hybrid 2D dual-metal-organic frameworks for enhanced water oxidation catalysis[J]. Adv. Funct. Mater., 2018,28(26)1801554. doi: 10.1002/adfm.201801554
HUANG J W, LUO W, YUAN X L, WANG J. Bimetallic MOF-derived oxides modified BiVO4 for enhanced photoelectrochemical water oxidation performance[J]. J. Alloy. Compd., 2023,930167397. doi: 10.1016/j.jallcom.2022.167397
FRIEBEL D, LOUIE M W, BAJDICH M, SANWALD K E, CAI Y, WISE A M, CHENG M J, SOKARAS D, WENG T C, ALONSO-MORI R, DAVIS R C, BARGAR J R, NORSKOV J K, NILSSON A, BELL A T. Identification of high active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting[J]. J. Am. Chem. Soc., 2015,137(3):1305-1313. doi: 10.1021/ja511559d
GAO T T, WU S W, LI X Q, LIN C H, YUE Q, TANG X M, YU S M, XIAO D. Phytic acid assisted ultra-fast in situ construction of Ni foam-supported amorphous Ni-Fe phytates to enhance catalytic performance for the oxygen evolution reaction[J]. Inorg. Chem. Front., 2022,9(14):3598-3608. doi: 10.1039/D2QI00924B
LIU Y Z, LI X T, SUN Q D, WANG Z L, HUANG W H, GUO X Y, FAN Z X, YE R Q, ZHU Y, CHUEH C C, CHEN C L, ZHU Z L. Freestanding 2D NiFe metal-organic framework nanosheets: Facilitating proton transfer via organic ligands for efficient oxygen evolution reaction[J]. Small, 2022,18(26)2201076. doi: 10.1002/smll.202201076
ZHOU G Y, MA Y R, GU C J, YANG J, PANG H, LI J, XU L, TANG Y W. Fe incorporation-induced electronic modification of Co-tannic acid complex nanoflowers for high-performance water oxidation[J]. Inorg. Chem. Front., 2022,9(6):1091-1099. doi: 10.1039/D1QI01630J
LV C H, REN Y Y, LI B B, LU Z M, LI L L, ZHANG X H, YANG X J, YU X F. 1, 2, 4-Triazole-assisted metal-organic framework-derived nitrogen-doped carbon nanotubes with encapsulated Co4N particles as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries[J]. J. Colloid Interface Sci., 2023,645:618-626. doi: 10.1016/j.jcis.2023.04.106
ZHANG S F, WEI N, YAO Z J, ZHAO X Y, DU M, ZHOU Q S. Oxygen vacancy-based ultrathin Co3O4 nanosheets as a high-efficiency electrocatalyst for oxygen evolution reaction[J]. Int. J. Hydrog. Energy, 2021,46(7):5286-5295. doi: 10.1016/j.ijhydene.2020.11.072
LIU Y F, LI Y, WU Q, SU Z, WANG B, CHEN Y F, WANG S F. Hollow CoP/FeP4 heterostructural nanorods interwoven by CNT as a highly efficient electrocatalyst for oxygen evolution reactions[J]. Nanomaterials, 2021,11(6)1450. doi: 10.3390/nano11061450
YUAN H F, WANG S M, GU X D, TANG B, LI J P, WANG X G. One-step solid-phase boronation to fabricate self-supported porous FeNiB/FeNi foam for efficient electrocatalytic oxygen evolution and overall water splitting[J]. J. Mater. Chem. A, 2019,7(33):19554-19564. doi: 10.1039/C9TA04076E
MAO X Q, LIU Y, CHEN Z Y, FAN Y P, SHEN P K. Fe and Co dual-doped Ni3S4 nanosheet with enriched high-valence Ni sites for efficient oxygen evolution reaction[J]. Chem. Eng. J., 2022,427130742. doi: 10.1016/j.cej.2021.130742
LI C Q, LIU Y W, GUAN L H, LI K, WANG G, LIN Y Q. Understanding coordination modification strategy on metal organic framework-based system for efficient water oxidation[J]. Chem. Eng. J., 2020,400125884. doi: 10.1016/j.cej.2020.125884
LIU M R, ZHENG X, TANG L, ZHANG M S, CHEN X, CAI Z X. The effect of replacing linker with carboxylic acid ligands on the oxygen evolution performance of metal-organic frameworks[J]. J. Alloy. Compd., 2023,961170976. doi: 10.1016/j.jallcom.2023.170976
MI H T, LI L Y, ZENG C T, JIN Y H, ZHANG Q Q, ZHOU K L, LIU J B, WANG H. Cuboid-like phosphorus-doped metal-organic framework-derived CoSe2 on carbon cloth as an advanced bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries[J]. J. Colloid Interface Sci., 2023,633:424-431. doi: 10.1016/j.jcis.2022.11.116
FAN C B, ZHANG X Y, GUO F, XING Z Y, WANG J L, LIN W Y, TAN J, HUANG G M, ZONG Z A. Design of five two-dimensional Co-metal-organic frameworks for oxygen evolution reaction and dye degradation properties[J]. Front. Chem., 2022,101044313. doi: 10.3389/fchem.2022.1044313
DENG Y J, WANG G H, SUN K L, CHI B, SHI X D, DONG Y Y, ZHENG L, ZENG J H, LI X H, LIAO S J. Highly effective and stable doped carbon catalyst with three-dimensional porous structure and well-covered Fe3C nanoparticles prepared with C3N4 and tannic acid as template/precursors[J]. J. Power Sources, 2019,417:117-124. doi: 10.1016/j.jpowsour.2019.02.022
CHEN M, ZHANG Z C, ZENG C M, JIANG J, GAO H J, AI L H. Synergistically boosting oxygen evolution performance of iron-tannic electrocatalyst via localized photothermal effect[J]. Colloid Surf. A‒Physicochem. Eng. Asp., 2022,638128248. doi: 10.1016/j.colsurfa.2022.128248
WANG Y Q, CHEN S, ZHAO S Y, CHEN Q W, ZHANG J T. Interfacial coordination assembly of tannic acid with metal ions on three-dimensional nickel hydroxide nanowalls for efficient water splitting[J]. J. Mater. Chem. A, 2020,8(31)15845. doi: 10.1039/D0TA02229B
SHI Y M, YU Y, LIANG Y, DU Y H, ZHANG B. In situ electrochemical conversion of an ultrathin tannin nickel iron complex film as an efficient oxygen evolution reaction electrocatalyst[J]. Angew. Chem.‒Int. Edit., 2019,58(12):3769-3773. doi: 10.1002/anie.201811241
CHEN H X, LI Y W, LIU H J, JI Q H, ZOU L J, GAO J K. Metal-organic framework-derived sulfur and nitrogen dual-doped bimetallic carbon nanotubes as electrocatalysts for oxygen evolution reaction[J]. J. Solid State Chem., 2020,288121421. doi: 10.1016/j.jssc.2020.121421
HAN Z, LIN S Y, FENG J J, ZHANG L, ZHANG Q L, WANG A J. Transitional metal alloyed nanoparticles entrapped into the highly porous N-doped 3D honeycombed carbon: A high-efficiency bifunctional oxygen electrocatalyst for boosting rechargeable Zn-air batteries[J]. Int. J. Hydrog. Energy, 2021,46(37):19385-19396. doi: 10.1016/j.ijhydene.2021.03.086
TANG C, ZHANG Q. Nanocarbon for oxygen reduction electrocatalysis: Dopants, edges, and defects[J]. Adv. Mater., 2017,29(13)1604103. doi: 10.1002/adma.201604103
SAMANTA A, RAJ C R. Catalyst support in oxygen electrocatalysis: A case study with CoFe alloy electrocatalyst[J]. J. Phys. Chem. C, 2018,122(28):15843-15852. doi: 10.1021/acs.jpcc.8b02830
CHENG L, HOU P M, LIU C B. Tannic acid-copper metal-organic frameworks decorated graphene oxide for reinforcement of the corrosion protection of waterborne epoxy coatings[J]. Mater. Corros., 2022,73(10):1666-1675. doi: 10.1002/maco.202213189
ZHOU G Y, WU X M, ZHAO M M, PANG H, XU L, YANG J, TANG Y W. Interfacial engineering-triggered bifunctionality of CoS2/MoS2 nanocubes/nanosheet arrays for high-efficiency overall water splitting[J]. ChemSusChem, 2021,14(2):699-708. doi: 10.1002/cssc.202002338
XUAN C J, WANG J, XIA W W, ZHU J, PENG Z K, XIA K D, XIAO W P, XIN H L L, WANG D L. Heteroatoms (P, B, S) incorporated NiFe-based nanocubes as efficient electrocatalysts for oxygen evolution reaction[J]. J. Mater. Chem. A, 2018,6(16):7062-7069. doi: 10.1039/C8TA00410B
SONG X Z, ZHAO Y H, ZHANG F, NI J C, ZHANG Z, TAN Z Q, WANG X F, LI Y Q. Coupling plant polyphenol coordination assembly with Co(OH)2 to enhance electrocatalytic performance towards oxygen evolution reaction[J]. Nanomaterials, 2022,12(22)3972. doi: 10.3390/nano12223972
ZHANG Z Y, SUN Y, ZHENG Y D, HE W, YANG Y Y, XIE Y J, FENG Z X, QIAO K. A biocompatible bacterial cellulose/tannic acid composite with antibacterial and anti-biofilm activities for biomedical applications[J]. Mater. Sci. Eng. C, 2020,106110249. doi: 10.1016/j.msec.2019.110249
GE W J, CAO S, SHEN F, WANG Y Y, REN J L, WANG X H. Rapid self-healing, stretchable, moldable, antioxidant and antibacterial tannic acid-cellulose nanofibril composite hydrogels[J]. Carbohyd. Polym., 2019,224115147. doi: 10.1016/j.carbpol.2019.115147
JIANG L, LIU Z M, YUAN Y, WANG Y J, LEI J X, ZHOU C L. Fabrication and characterization of fatty acid/wood-flour composites as novel form-stable phase change materials for thermal energy storage[J]. Energy Build., 2018,171:88-99. doi: 10.1016/j.enbuild.2018.04.044
SONG P, JIANG S C, REN Y J, ZHANG X, QIAO T K, SONG X F, LIU Q M, CHEN X S. Synthesis and characterization of tannin grafted polycaprolactone[J]. J. Colloid Interface Sci., 2016,479:160-164. doi: 10.1016/j.jcis.2016.06.056
MUNJAL S, KHARE N, NEHATE C, KOUL V. Water dispersible CoFe2O4 nanoparticles with improved colloidal stability for biomedical applications[J]. J. Magn. Magn. Mater., 2016,404:166-169. doi: 10.1016/j.jmmm.2015.12.017
WU Q J, SI D H, SUN P P, DONG Y L, ZHENG S, CHEN Q, YE S H, SUN D, CAO R, HUANG Y B. Atomically precise copper nanoclusters for highly efficient electroreduction of CO2 towards hydrocarbons via breaking the coordination symmetry of Cu site[J]. Angew. Chem.‒Int. Edit., 2023,62(36)e202306822. doi: 10.1002/anie.202306822
CRISTIANI F, DEVⅡLANOVA F A, VERANI G. Zinc(Ⅱ), cadmium(Ⅱ) and mercury(Ⅱ) halide pyrrolidine-2-thione complexes[J]. Transit. Met. Chem., 1977,2:50-52. doi: 10.1007/BF01402680
HALLAM H E, JONES C M. Molecular configuration and interactions of the amide group-Ⅲ infrared spectra of thio- and seleno-lactams between 1 400 and 550 cm-l and the nature of the νCS and νCSe vibrations[J]. Spectroc. Acta Pt. A‒Molec. Spectr., 1969,25(11):1791-1798. doi: 10.1016/0584-8539(69)80207-2
GUO D K, HAN S C, WANG J C, ZHU Y F. MIL-100-Fe derived N-doped Fe/Fe3C@C electrocatalysts for efficient oxygen reduction reaction[J]. Appl. Surf. Sci., 2018,434:1266-1273. doi: 10.1016/j.apsusc.2017.11.230
HONG W, KITTA M, XU Q. Bimetallic MOF-derived FeCo-P/C nanocomposites as efficient catalysts for oxygen evolution reaction[J]. Small Methods, 2018,2(12)1800214. doi: 10.1002/smtd.201800214
ZHAI H Y, ZOU Z L, LI M Y, ZHANG L Y, ZHOU W J. Synthesis of boron and phosphorus co-doped Fe-Co bimetallic materials for electrocatalytic oxygen evolution[J]. Chinese J. Inorg. Chem., 2023,39(4):627-636.
LI D R, PAN Z Q, TAO H, LI J C, GU W S, LI B T, ZHONG C L, JIANG Q Y, YE C Q, ZHOU Q W. Self-derivation-behaviour of substrate realizing enhanced oxygen evolution reaction[J]. Chem. Commun., 2020,56(82):12399-12402. doi: 10.1039/D0CC05253A
ZHANG Z Y, XU Y Q, WU M, LUO B F, HAO J H, SHI W D. Homogeneously dispersed cobalt/iron electrocatalysts with oxygen vacancies and favorable hydrophilicity for efficient oxygen evolution reaction[J]. Int. J. Hydrog. Energy, 2021,46(21):11652-11663. doi: 10.1016/j.ijhydene.2021.01.063
SAHOO S, SAHOO P K, MANNA S, SATPATI A K. A novel low cost nonenzymatic hydrogen peroxide sensor based on CoFe2O4/CNTs nanocomposite modified electrode[J]. J. Electroanal. Chem., 2020,876114504. doi: 10.1016/j.jelechem.2020.114504
XIE M W, MA Y, LIN D M, XU C G, XIE F Y, ZENG W. Bimetal-organic framework MIL-53(Co-Fe): An efficient and robust electrocatalyst for the oxygen evolution reaction[J]. Nanoscale, 2020,12(1):67-71. doi: 10.1039/C9NR06883J
DONG S F, TAN Z K, CHEN Q S, HUANG G C, WU L, BI J H. Cobalt quantum dots as electron collectors in ultra-narrow bandgap dioxin linked covalent organic frameworks for boosting photocatalytic solar-to-fuel conversion[J]. J. Colloid Interface Sci., 2022,628:573-582. doi: 10.1016/j.jcis.2022.08.047
SU K Y, YU Z H, LI M M, YANG S, LIANG Y J, TANG Y W, QIU X Y. Three-dimensional nickel cobalt phosphide nanocrosses with well-defined axial arms for efficient oxygen evolution reaction[J]. Chem.‒Eur. J., 2023,29(32)e202300398. doi: 10.1002/chem.202300398
LI K K, CUI J R, YANG Q, WANG S L, LUO R M, RODAS-GONZALEZ A, WEI P Y, LIU L. A new sensor for the rapid electrochemical detection of ractopamine in meats with high sensitivity[J]. Food Chem., 2023,405134791. doi: 10.1016/j.foodchem.2022.134791
KIM C, KIM S H, LEE S, KWON I, KIM S H, KIM S, SEOK C, PARK Y S, KIM Y. Boosting overall water splitting by incorporating sulfur into NiFe (oxy) hydroxide[J]. J. Energy Chem., 2022,64:364-371. doi: 10.1016/j.jechem.2021.04.067
BOPPELLA R, TAN J W, YUN J W, MANORAMA S V, MOON J. Anion-mediated transition metal electrocatalysts for efficient water electrolysis: Recent advances and future perspectives[J]. Coord. Chem. Rev., 2021,427213552. doi: 10.1016/j.ccr.2020.213552
WANG T Y, NAM G, JIN Y, WANG X Y, REN P J, KIM M G, LIANG J S, WEN X D, JANG H, HAN J T, HUANG Y H, LI Q, CHO J. NiFe (oxy) hydroxides derived from NiFe disulfides as an efficient oxygen evolution catalyst for rechargeable Zn-air batteries: The effect of surface S residues[J]. Adv. Mater., 2018,30(27)1800757. doi: 10.1002/adma.201800757
CHEN Z Z, HOU J G, ZHOU J, HUANG P, WANG H Q, XU C X. Carbon shell coated hollow NiCoSex composite as high-performance anode for lithium storage[J]. Rare Metals, 2021,40(11):3185-3194. doi: 10.1007/s12598-021-01748-7
YANG Y L, MA G Z, HUANG J X, NAN J M, ZHEN S Y, WANG Y, LI A J. Hollow MnO2 spheres/porous reduced graphene oxide as a cathode host for high-performance lithium-sulfur batteries[J]. J. Solid State Chem., 2020,286121297. doi: 10.1016/j.jssc.2020.121297
ZHAO T, ZHONG D Z, HAO G Y, ZHAO Q. Vacancy engineering and hydrophilic construction of CoFe-MOF for boosting water splitting by in situ phytic acid treatment[J]. Appl. Surf. Sci., 2023,607155079. doi: 10.1016/j.apsusc.2022.155079
ZHAO C X, LI B Q, ZHAO M, LIU J N, ZHAO L D, CHEN X, ZHANG Q. Precise anionic regulation of NiFe hydroxysulfide assisted by electrochemical reactions for efficient electrocatalysis[J]. Energ. Environ. Sci., 2020,13(6):1711-1716. doi: 10.1039/C9EE03573G
SAIKIA D, DEKA J R, LIN C W, LAI Y H, ZENG Y H, CHEN P H, KAO H M, YANG Y C. Insight into the superior lithium storage properties of ultrafine CoO nanoparticles confined in a 3 D bimodal ordered mesoporous carbon CMK-9 anode[J]. ChemSusChem, 2020,13(11):2952-2965. doi: 10.1002/cssc.202000009
YAO Y C, MA Z T, DOU Y B, LIM S Y, ZOU J Z, STAMATE E, JENSEN J O, ZHANG W J. Random occupation of multi-metal sites in transition metal-organic frameworks for boosting water oxidation[J]. Chem.‒Eur. J., 2022,28(14)e202104288. doi: 10.1002/chem.202104288
ZHANG J J, WANG H H, ZHAO T J, ZHANG K X, WEI X, JIANG Z D, HIRANO S I, LI X H, CHEN J S. Oxygen vacancy engineering of Co3O4 nanocrystals through coupling with metal support for water oxidation[J]. ChemSusChem, 2017,10(14):2875-2879. doi: 10.1002/cssc.201700779
LUO C, HU E Y, GASKELL K J, FAN X L, GAO T, CUI C Y, GHOSE S, YANG X Q, WANG C S. A chemically stabilized sulfur cathode for lean electrolyte lithium sulfur batteries[J]. Proc. Natl. Acad. Sci. U. S. A., 2020,117(26):14712-14720. doi: 10.1073/pnas.2006301117
WANG J S, LIU J, ZHANG B, CHENG F, RUAN Y J, JI X, XU K, CHEN C, MIAO L, JIANG J J. Stabilizing the oxygen vacancies and promoting water-oxidation kinetics in cobalt oxides by lower valence-state doping[J]. Nano Energy, 2018,53:144-151. doi: 10.1016/j.nanoen.2018.08.022
ZHU Z W, ZHANG Y D, WANG H, XIA B Y, YOU B. Improved corrosion-resistance and regulated electro-state of elastic polyaniline coated nickel phosphide for efficient water oxidation[J]. ChemCatChem, 2022,14(23)e202201100. doi: 10.1002/cctc.202201100
SUNADA S, MAJIMA K, AKASOFU Y, KANEKO Y. Corrosion assessment of Nd-Fe-B alloy with Co addition through impedance measurements[J]. J. Alloy. Compd., 2006,408-412:1373-1376. doi: 10.1016/j.jallcom.2005.04.039
LI C Q, WANG G, LI K, LIU Y W, YUAN B B, LIN Y Q. FeNi-based coordination crystal directly serving as efficient oxygen evolution reaction catalyst and its density functional theory insight on the active site change mechanism[J]. ACS Appl. Mater. Interfaces, 2019,11(23):20778-20787. doi: 10.1021/acsami.9b02994
RUAN H D, FROST R L, KLOPROGGE J T. The behavior of hydroxyl units of synthetic goethite and its dehydroxylated product hematite[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 2001,57(13):2575-2586. doi: 10.1016/S1386-1425(01)00445-0
GUO C Y, LIU X J, GAO L F, KUANG X, REN X, MA X J, ZHAO M Z, YANG H, SUN X, WEI Q. Fe-doped Ni2P nanosheets with porous structure for electroreduction of nitrogen to ammonia under ambient conditions[J]. Appl. Catal. B‒Environ., 2020,263118296. doi: 10.1016/j.apcatb.2019.118296
ZOU X, FANG G J, QIN P L, WANG H J, SONG Z C, WANG H N, LONG H, WAN Q. Improved interface properties and reliability for Hf-In-Zn-O semiconductor capacitors with an electric-double-layer gate dielectric by inserting a HfO2 interlayer[J]. Thin Solid Films, 2013,540:261-265. doi: 10.1016/j.tsf.2013.06.007
HOU J H, LEI Y G, WANG F, MA X H, MIN S X, JIN Z L, XU J. In-situ photochemical fabrication of transition metal-promoted amorphous molybdenum sulfide catalysts for enhanced photosensitized hydrogen evolution[J]. Int. J. Hydrog. Energy, 2017,42(16):11118-11129. doi: 10.1016/j.ijhydene.2017.01.235
LIU Y H, JIN Z Y, LI P P, TIAN X Q, CHEN X J, XIAO D. Boron- and iron-incorporated α-Co(OH)2 ultrathin nanosheets as an efficient oxygen evolution catalyst[J]. Electrochem. Commun., 2018,5(4):593-597.
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
Jie ZHANG , Xin LIU , Zhixin LI , Yuting PEI , Yuqi YANG , Huimin LI , Zhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310
Weichen WANG , Chunhua GONG , Junyong ZHANG , Yanfeng BI , Hao XU , Jingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415
Yifan LIU , Zhan ZHANG , Rongmei ZHU , Ziming QIU , Huan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008
Huan ZHANG , Jijiang WANG , Guang FAN , Long TANG , Erlin YUE , Chao BAI , Xiao WANG , Yuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291
Hao WANG , Kun TANG , Jiangyang SHAO , Kezhi WANG , Yuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
Min ZHU , Yuxin WANG , Xiao LI , Yaxu XU , Junwen ZHU , Zihao WANG , Yu ZHU , Xiaochen HUANG , Dan XU , Monsur Showkot Hossain Abul . Construction of AgVO3/ZIF-8 composites for enhanced degradation of tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 994-1006. doi: 10.11862/CJIC.20240392
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Yuxin Wang , Zhengxuan Song , Yutao Liu , Yang Chen , Jinping Li , Libo Li , Jia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779
Ze Zhang , Lei Yang , Jin-Ru Liu , Hao Hu , Jian-Li Mi , Chao Su , Bei-Bei Xiao , Zhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013
Jimin HOU , Mengyang LI , Chunhua GONG , Shaozhuang ZHANG , Caihong ZHAN , Hao XU , Jingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348
Ziyi Zhu , Yang Cao , Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
Jiahao Xie , Jin Liu , Bin Liu , Xin Meng , Zhuang Cai , Xiaoqin Xu , Cheng Wang , Shijie You , Jinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236
Inset: Tafel plot of S-FeCoTA0.
Inset in a: equivalent circuit, where CPE is the constant phase angle element and Rs is the solution resistance;
Inset in b: LSV curves before and after 1 000 cycles