Cu(Ⅱ) and Cu(Ⅰ) complexes based on derivatives of imidazo[1,5-a]pyridine: Synthesis, structures, in situ metal-ligand reactions, and catalytic activity
- Corresponding author: Yahong LI, liyahong@suda.edu.cn
Citation:
Bofei JIA, Zhihao LIU, Zongyuan GAO, Shuai ZHOU, Mengxiang WU, Qian ZHANG, Xiamei ZHANG, Shuzhong CHEN, Xiaohan YANG, Yahong LI. Cu(Ⅱ) and Cu(Ⅰ) complexes based on derivatives of imidazo[1,5-a]pyridine: Synthesis, structures, in situ metal-ligand reactions, and catalytic activity[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(5): 1020-1036.
doi:
10.11862/CJIC.20240317
MIYAURA N, NEUBA A, FLORKE U, MEYER-KLAUCK W, SALOMONE-STAGNI M, BILLE , BOTHE E, HFER P, HENKEL G. The trinuclear copper(Ⅰ) thiolate complexes[Cu3(NGuaS)3]0/1+ and their dimeric variants[Cu6(NGuaS)6]1+/2+/3+ with biomimetic redox properties[J]. Angew. Chem.‒Int. Edit., 2011,50:4503-4507. doi: 10.1002/anie.201008076
TAO W, YERBULEKOVA A, MOORE C E, SHAFAAT H S, ZHANG S. Controlling the direction of S-nitrosation versus denitrosation: Reversible cleavage and formation of an S—N bond within a dicopper center[J]. J. Am. Chem. Soc., 2022,144:2867-2872. doi: 10.1021/jacs.1c12799
MIRTS E N, DIKANOV S A, JOSE A, SOLOMON E I, LU Y. A binuclear CuA center designed in an all α-helical protein scaffold[J]. J. Am. Chem. Soc., 2020,142:13779-13794. doi: 10.1021/jacs.0c04226
PRIGGE S T, EIPPER B A, MAINS R E, AMZEL L M. Dioxygen binds end-on to mononuclear copper in a precatalytic enzyme complex[J]. Science, 2004,304:864-867. doi: 10.1126/science.1094583
LIEBERMAN R L, ROSENZWEIG A C. Crystal structure of a membrane-bound metalloenzyme that catalysis the biological oxidation of methane[J]. Nature, 2005,434:177-182. doi: 10.1038/nature03311
DÍEZ-GONZÁLEZ S, NOLAN S P. N-heterocyclic carbene-copper(Ⅰ) complexes in homogeneous catalysis[J]. Synlett, 2007(14):2158-2167.
LAZREG F, NAHRA F, CAZIN C S J. Copper-NHC complexes in catalysis[J]. Coord. Chem. Rev., 2015,293-294:48-79. doi: 10.1016/j.ccr.2014.12.019
KUMAR S, ARORA A, MAIKHURI V K, CHAUDHARY A, KUMAR R, PARMAR V S, SINGH B K, MATHUR D. Advances in chromone-based copper(Ⅱ) Schiff base complexes: Synthesis, characterization, and versatile applications in pharmacology and biomimetic catalysis[J]. RSC Adv., 2024,14:17102-17139. doi: 10.1039/D4RA00590B
PLASS W, POHLMANN A, RAUTENGARTEN J. Magnetic interactions as supramolecular function: Structure and magnetic properties of hydrogen-bridged dinuclear copper(Ⅱ) complexes[J]. Angew. Chem.‒Int. Edit., 2001,40:4207-4210. doi: 10.1002/1521-3773(20011119)40:22<4207::AID-ANIE4207>3.0.CO;2-W
HOZUMI T, HASHIMOTO K, OHKOSHI S I. Electrochemical synthesis, crystal structure, and photomagnetic properties of a three-dimensional cyano-bridged copper-molybdenum complex[J]. J. Am. Chem. Soc., 2005,127:3864-3869. doi: 10.1021/ja044107o
LI J Y, WANG L D, ZHAO Z F, LI X Y, YU X, HUO P H, JIN Q H, LIU Z W, BIAN Z Q, HUANG C H. Two-coordinate copper(Ⅰ)/NHC complexes: Dual emission properties and ultralong room-temperature phosphorescence[J]. Angew. Chem.‒Int. Edit., 2020,59:8210-8217. doi: 10.1002/anie.201916379
ZHANG J P, LIN Y Y, HUANG X C, CHEN X M. Copper(Ⅰ) 1, 2, 4-triazolates and related complexes: Studies of the solvothermal ligand reactions, network topologies, and photoluminescence properties[J]. J. Am. Chem. Soc., 2005,127:5495-5506. doi: 10.1021/ja042222t
LAVIE-CAMBOT A, CANTUEL M, LEYDET Y, JONUSAUSKAS G, BASSANI D, McCLENAGHAN N D. Improving the photophysical properties of copper(Ⅰ) bis(phenanthroline) complexes[J]. Coord. Chem. Rev., 2008,252:2572-2584. doi: 10.1016/j.ccr.2008.03.013
WILLIAMS R M, DE COLA L, HARTL F, LAGREF J J, PLANEIX J M, DE CIAN A, HOSSEINI M W. Photophysical, electrochemical and electrochromic properties of copper-bis(4, 4'-dimethyl-6, 6'-diphenyl-2, 2'-bipyridine) complexes[J]. Coord. Chem. Rev., 2002,230:253-261. doi: 10.1016/S0010-8545(02)00046-2
HAMZE R, PELTIER J L, SYLVINSON D, BERTRAND G, THOMPSON M E. Eliminating nonradiative decay in Cu(Ⅰ) emitters: > 99% quantum efficiency and microsecond lifetime[J]. Science, 2019,363:601-606. doi: 10.1126/science.aav2865
SCHNEIDER J L, CARRIER S M, RUGGIERO C E, YOUNG V G, TOLMAN W B. Influences of ligand environment on the spectroscopic properties and disproportionation reactivity of copper-nitrosyl complexes[J]. J. Am. Chem. Soc., 1998,120:11408-11418. doi: 10.1021/ja982172q
KIM D, WANG L P, HALE J J, LYNCH C L, BUDHU R J, MACCOSS M, MILLS S G, MALKOWITZ L, GOULD S L, DEMARTINO J A, SPRINGER M S, HAZUDA D, MILLER M, KESSLER J, HRIN R C, CARVER G, CARELLA A, HENRY K, LINEBERGER J, SCHLEIF W A, EMINI E A. Potent 1, 3, 4-trisubstituted pyrrolidine CCR5 receptor antagonists: Effects of fused heterocycles on antiviral activity and pharmacokinetic properties[J]. Bioorg. Med. Chem. Lett., 2005,152129. doi: 10.1016/j.bmcl.2005.02.030
VANDA D, ZAJDEL P, SOURAL M. Imidazopyridine-based selective and multifunctional ligands of biological targets associated with psychiatric and neurodegenerative diseases[J]. Eur. J. Med. Chem., 2019,181111569. doi: 10.1016/j.ejmech.2019.111569
KITAZAWA D, TOMINAGA G, TAKANO A. One-pot three-component synthesis of imidazo[1,5-a]pyridines[J]. Chemical Abstracts, 2001,134200276.
NAKAMURA H, YAMAMOTO H. One-pot three-component synthesis of imidazo[1,5-a]pyridines[J]. Chemical Abstracts, 2005,142440277.
ALBRECHT G, GEIS C, HERR J M, RUHLI J, GOTTLICH R, SCHELTTWEIN D. Electroluminescence and contact formation of 1-(pyridin-2-yl)-3-(quinolin-2-yl)imidazo[1,5-a]quinoline thin films[J]. Org. Electron., 2019,65:321-326. doi: 10.1016/j.orgel.2018.11.032
IMADA Y, MUKAI S, TAHARA K, KOZAI N, ITAYA M, YOSHIDA Y, UETA S, ARAKAWA Y, MINAGAWA K, YAGISHITA F. Divalent metal complexes of N, O- and N, N-bidentate imidazo[1,5-a]pyridine ligands: Synthesis, crystal structures, and photophysical properties[J]. Inorg. Chim. Acta, 2023,555121584. doi: 10.1016/j.ica.2023.121584
DONG J, YANG D D, WANG B Q. Homo- and copolymerization of norbornene with allyl palladium and nickel complexes bearing imidazo[1,5-a]pyridine sulfonate ligands[J]. Eur. J. Inorg. Chem., 2021:4661-4668.
PISCHEDDA S, STOCCORO S, ZUCCA A, SCIORTINO G, ORTU F, CLARKSON G J. Synthesis and characterization of new Pd(Ⅱ) and Pt(Ⅱ) complexes with 3-substituted 1-(2-pyridyl)imidazo[1,5-a]pyridine ligands[J]. Dalton Trans., 2021,50:4859-4873. doi: 10.1039/D1DT00546D
CUI Y F, GE Y, LI Y H, TAO J, YAO J L, DONG Y P. Single-ion magnet behavior of two pentacoordinate CoⅡ complexes with a pincer ligand 2, 6-bis(imidazo[1,5-a]pyridin-3-yl)pyridine[J]. Struct. Chem., 2020,31:547-555. doi: 10.1007/s11224-019-01429-3
ZHANG H F, CHEN Y M, QIN Y R, LI Y H, LI W, LIU W. CuⅡ and CuⅠ complexes of 1, 1'-(pyridin-2-ylmethylene)-bis[3-(pyridin-2-yl)imidazo[1,5-a]pyridine]: In situ generation of the ligand via acetic acid-controlled metal-ligand reactions[J]. Chin. J. Struct. Chem., 2015,34:1417-1427.
LIU J N, CAO Y H, LI L, PEI H, CHEN Y M, HU J F, QIN Y R, LI Y H, LI W, LIU W. Titanium complexes supported by imidazo[1,5-a]pyridine-containing pyrrolyl ligand as catalysts for hydroamination and polymerization reactions, and as an antitumor reagent[J]. RSC Adv., 2015,5:10318-10325. doi: 10.1039/C4RA14692A
SCHLEICHER D, TRONNIER A, SOELLNER J, STRASSNER T. Cyclometalated ruthenium(Ⅱ) NHC complexes with imidazo[1,5-a]pyridine-based (C.C) ligands—Synthesis and characterization[J]. Eur. J. Inorg. Chem., 2019,2019:1956-1965. doi: 10.1002/ejic.201900108
ZHANG Y W, DAS R, LI Y, WANG Y Y, HAN Y F. Synthesis, characterization, and properties of organometallic molecular cylinders bearing bulky imidazo[1,5-a]pyridine-based N-heterocyclic carbene ligands[J]. Chem.‒Eur. J., 2019,25:5472-5479. doi: 10.1002/chem.201806204
CHEN Y M, LI L, CHEN Z, LIU Y L, HU H L, CHEN W Q, LIU W, LI Y H, LEI T, CAO Y Y, KANG Z H, LIN M S, LI W. Metal-mediated controllable creation of secondary, tertiary, and quaternary carbon centers: A powerful strategy for the synthesis of iron, cobalt, and copper complexes with in situ generated substituted 1-pyridineimidazo[1,5-a]pyridine ligands[J]. Inorg. Chem., 2012,51:9705-9713. doi: 10.1021/ic300949y
KUNDU N, BHATTACHARYA K, ABTAB S M T, CHAUDHURY M. 'One-pot' synthesis of multi-ring heteroaromatic compounds involving a pair of imidazo[1,5-a]pyridine moiety: Reporting an interesting bis-bidentate ligand capable of forming helicates[J]. Tetrahedron Lett., 2012,53:2719-2721. doi: 10.1016/j.tetlet.2012.03.078
FULWA V K, SAHU R, JENA H S, MANIVANNAN V. Novel synthesis of 2, 4-bis(2-pyridyl)-5-(pyridyl)imidazoles and formation of N-(3-(pyridyl)imidazo[1,5-a]pyridine)picolinamidines: Nitrogen-rich ligands[J]. Tetrahedron Lett., 2009,50:6264-6267. doi: 10.1016/j.tetlet.2009.09.002
BURSTEIN C, LEHMANN C W, GLORIUS F. Imidazo[1,5-a]pyridine-3-ylidenes-pyridine derived N-heterocyclic carbene ligands[J]. Tetrahedron, 2005,61:6207-6217. doi: 10.1016/j.tet.2005.03.115
WANG J, DYERS L, MASON R, AMOYAW P, BU X R. Highly efficient and direct heterocyclization of dipyridyl ketone to N, N-bidentate ligands[J]. J. Org. Chem., 2005,70:2353-2356. doi: 10.1021/jo047853k
BLUHM M E, FOLLI C, PUFKY D, KRÖGER M, WALTER O, DÖRING M. 3-Aminoiminoacrylate, 3-aminoacrylate, and 3-amidoiminomalonate complexes as catalysts for the dimerization of olefins[J]. Organometallics, 2005,24:4139-4152. doi: 10.1021/om049075s
ÁLVAREZ C M, ÁLVAREZ-MIGUEL L, GARCÍA-RODRÍGUEZ R, MARTÍN-ÁLVAREZ J M, MIGUEL D. 3-(Pyridin-2-yl)imidazo[1,5-a]pyridine (pyridylindolizine) as ligand in complexes of transition and main-group metals[J]. Eur. J. Inorg. Chem., 2015,2015:4921-4934. doi: 10.1002/ejic.201500776
LIGTENBARG A G J, SPEK A L, HAGE R B, FERINGA B L. Vanadium(Ⅴ) complexes based on a bis(pyridine)-imine ligand (HL); Synthesis and crystal structure of a dioxovanadium(Ⅴ) complex involving a ligand cyclisation[J]. J. Chem. Soc. Dalton Trans., 1999(5):659-661. doi: 10.1039/a809476d
ÁLVAREZ C M, ÁLVAREZ-MIGUEL L, GARCÍA-RODRÍGUEZ R, MIGUEL D. Complexes with 3-(pyridin-2-yl)imidazo[1,5-a]pyridine ligands by spontaneous dimerization of pyridine-2-carboxaldehyde within the coordination sphere of manganese(Ⅱ) in a one-pot reaction[J]. Dalton Trans., 2012,41:7041-7046. doi: 10.1039/c2dt30453h
GARINO C, RUIU T, SALASSA L, ALBERTINO A, VOLPI G, NERVI C, GOBETTO R, HARDCASTLE K I. Spectroscopic and computational study on new blue emitting ReL(CO)3Cl complexes containing pyridylimidazo[1,5-a]pyridine ligands[J]. Eur. J. Inorg. Chem., 2008:3587-3591.
SALASSA L, GARINO C, ALBERTINO A, VOLPI G, NERVI C, GOBETTO R, HARDCASTLE K I. Computational and spectroscopic studies of new rhenium(Ⅰ) complexes containing pyridylimidazo[1,5-a]pyridine ligands: Charge transfer and dual emission by fine-tuning of excited states[J]. Organometallics, 2008,27:1427-1435. doi: 10.1021/om701175z
VOLPI G, GARINO C, SALASSA L, FIEDLER J, HARDCASTLE K I, GOBETTO R, NERVI C. Cationic heteroleptic cyclometalated iridium complexes with 1-pyridylimidazo[1,5-α]pyridine ligands: Exploitation of an efficient intersystem crossing[J]. Chem.‒Eur. J., 2009,15:6415-6427. doi: 10.1002/chem.200801474
CHEN Y M, LI L, CAO Y Y, WU J, GAO Q, LI Y H, HU H L, LIU W, LIU Y L, KANG Z H, LI J P. CuⅡ-mediated controllable creation of tertiary and quaternary carbon centers: Designed assembly and structures of a new class of copper complexes supported by in situ generated substituted 1-pyridineimidazo[1,5-a]pyridine ligands[J]. CrystEngComm, 2013,15:2675-2681. doi: 10.1039/c3ce00012e
BLUHM V, CIESIELSKI M, GÖRLS H, WALTER O, DÖRING M. Complexes of Schiff bases and intermediates in the copper-catalyzed oxidative heterocyclization by atmospheric oxygen[J]. Inorg. Chem., 2003,42:8878-8885. doi: 10.1021/ic034773a
DOLOMANOV O V, BOURHIS L J, GILDEA R J, HOWARD J A K, PUSCHMANN H. OLEX2: A complete structure solution refinement and analysis program[J]. J. Appl. Crystallogr., 2009,42:339-341. doi: 10.1107/S0021889808042726
SHELDRICK G M. Crystal structure refinement with SHELXL[J]. Acta Crystallogr. Sect. C, 2015,C71:3-8.
CASANOVA D, LLUNELL M, ALEMANY P, ALVAREZ S. The rich stereochemistry of eight-vertex polyhedra: A continuous shape measures study[J]. Chem.‒Eur. J., 2005,11:1479-1494. doi: 10.1002/chem.200400799
ZHANG Q, CUI Y F, ZHANG X M, LI Y H, YAO J L. Manganese(Ⅱ) and copper(Ⅰ) compounds based on two derivatives of imidazo[1,5-a]pyridine: Synthesis, structures, magnetic properties, and catalytic activity[J]. Chin. J. Struct. Chem., 2022,412203148.
JING Y, ZHANG X M, CUI Y F, LI D W, SUN H, GE Y, LI Y H. Two copper complexes based on derivatives of imidazo[1,5-a]pyridine: Synthesis, structures, and catalytic property[J]. Chin. J. Struct. Chem., 2020,39:1057-1062.
FEI H H, ROGOW D L, OLIVER S R J. Reversible anion exchange and catalytic properties of two cationic metal-organic frameworks based on Cu(Ⅰ) and Ag(Ⅰ)[J]. J. Am. Chem. Soc., 2010,132:7202-7209.
Zhaodong WANG . In situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268
Chunhua Ma , Mengjiao Liu , Siyu Ouyang , Zhenwei Cui , Jingjing Bi , Yuqin Jiang , Zhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755
Kongchuan Wu , Dandan Lu , Jianbin Lin , Ting-Bin Wen , Wei Hao , Kai Tan , Hui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906
Lang Gao , Cen Zhou , Rui Wang , Feng Lan , Bohang An , Xiaozhou Huang , Xiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832
Shu Lin , Kezhen Qi . Phase-dependent lithium-alloying reactions for lithium-metal batteries. Chinese Chemical Letters, 2024, 35(4): 109431-. doi: 10.1016/j.cclet.2023.109431
Mei Peng , Wei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899
Shehla Khalid , Muhammad Bilal , Nasir Rasool , Muhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498
He Yao , Wenhao Ji , Yi Feng , Chunbo Qian , Chengguang Yue , Yue Wang , Shouying Huang , Mei-Yan Wang , Xinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
Ying-Di Hao , Zhi-Qian Lin , Xiao-Yu Guo , Jiao Liang , Can-Kun Luo , Qian-Tao Wang , Li Guo , Yong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834
Xiaoxue Li , Hongwei Zhou , Rongrong Qian , Xu Zhang , Lei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036
Yao HUANG , Yingshu WU , Zhichun BAO , Yue HUANG , Shangfeng TANG , Ruixue LIU , Yancheng LIU , Hong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359
Junyi Yu , Yin Cheng , Anhong Cai , Xianfeng Huang , Qingrui Zhang . Synthetic Cu(Ⅲ) from copper plating wastewater for onsite decomplexation of Cu(Ⅱ)- and Ni(Ⅱ)-organic complexes. Chinese Chemical Letters, 2025, 36(2): 110549-. doi: 10.1016/j.cclet.2024.110549
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Xiao-Ya Yuan , Cong-Cong Wang , Bing Yu . Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer. Chinese Chemical Letters, 2024, 35(9): 109517-. doi: 10.1016/j.cclet.2024.109517
Yanhua Peng , Xin Yu , Ting Wang . Adaptive nanoconfined Fenton-like reactions: Tailoring carbon pathways for sustainable water treatment and energy harvesting. Chinese Chemical Letters, 2024, 35(12): 110198-. doi: 10.1016/j.cclet.2024.110198
Yanan Zhou , Li Sheng , Lanlan Chen , Wenhua Zhang , Jinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588
Luyao Lu , Chen Zhu , Fei Li , Pu Wang , Xi Kang , Yong Pei , Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411
Tao Yu , Vadim A. Soloshonok , Zhekai Xiao , Hong Liu , Jiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901
Xiaofen GUAN , Yating LIU , Jia LI , Yiwen HU , Haiyuan DING , Yuanjing SHI , Zhiqiang WANG , Wenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122
The hydrogen atoms and solvent (CH2Cl2) molecules are omitted for clarity; Symmetry code: A: 1-x, -y, 1-z.
The hydrogen atoms are omitted for clarity; Symmetry code: A: 1-x, y, 3/2-z.
The hydrogen atoms are omitted for clarity.
The hydrogen atoms are omitted for clarity; Symmetry code: A: 1-x, 1-y, 1-z.
The hydrogen atoms are omitted for clarity.
The hydrogen atoms are omitted for clarity.
The hydrogen atoms are omitted for clarity; Symmetry code: A: -x, 1-y, 1-z.
The hydrogen atoms and solvent (EtOH) molecules are omitted for clarity; Symmetry code: A: x, y, 1/2-z.