Citation: Yan ZHAO, Jiaxu WANG, Zhonghu LI, Changli LIU, Xingsheng ZHAO, Hengwei ZHOU, Xiaokang JIANG. Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316 shu

Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance

Figures(8)

  • A series of red-emitting phosphors, specifically Eu3+-doped Sc2W3O12, were synthesized using the sol-gel method. Furthermore, the symmetry of the Sc2W3O12 matrix crystal structure was diminished through Gd3+ doping, thereby enhancing the luminescence intensity of the phosphor. The findings indicate that incorporating Gd3+ did not alter the intrinsic crystal structure of Sc2W3O12. As the doping concentration of Gd3+ increased, the lattice distortion became more pronounced, resulting in a significant enhancement of the luminescence intensity corresponding to the 5D07F2 transition (612 nm) from Eu3+. The optimal doping concentration of Gd3+ was determined to be 0.25, yielding a luminescence intensity that was 1.95 times greater than that of solely Eu3+-doped samples. Additionally, the color coordinates (0.613 4, 0.350 3) were near the standard red color coordinates (0.670, 0.330). Furthermore, the fluorescent powder exhibited notable thermal stability; specifically, when the temperature reached 498 K, the fluorescence intensity of the sample with a Gd3+ ion concentration of 0.25 was enhanced compared to that of undoped Gd3+ ions, achieving 53% of its value at room temperature. Additionally, its activation energy was measured at 0.104 1 eV.
  • 加载中
    1. [1]

      LIAO Z Q, YAN H K, YU Y Q, FENG L Z, GONG G L, WEN H R, LIAO J S. Achieving zero thermal quenching of Al2(WO4)3: Eu, Tb red phosphors with low thermal expansion for LEDs[J]. Ceram. Int., 2024,50(18):33217-33224. doi: 10.1016/j.ceramint.2024.06.132

    2. [2]

      YANG J, LAI X Q, LUO L H, LI W P, DU P. Regulating the concentration quenching in Eu3+-activated Lu2W3O12 red-emitting phosphors through phase transition for white light emitting diode and plant growth applications[J]. Ceram. Int., 2024,50(18):34403-34411. doi: 10.1016/j.ceramint.2024.06.259

    3. [3]

      ZENG F, RU J J, ZHAO B, GUO F Y, CHEN J Z. Development of a novel Eu3+-doped tantalate red-emitting phosphor for w-LEDs application[J]. J. Rare Earths, 2024,42(8):1479-1488. doi: 10.1016/j.jre.2023.07.014

    4. [4]

      KUMARI S, ROHILLA P, PRASAD A, RAO A, SINHA R. Structural characterization and luminescence characteristics of Dy3+ doped Sr9Y2W4O24 phosphor for application in white LEDs[J]. J. Lumin., 2024,275120791. doi: 10.1016/j.jlumin.2024.120791

    5. [5]

      PREJAPAI R N, MISHRA A P, PARAUHA Y R, DHOBLE S J. Selfluminescence properties of Zn3(VO4)2 phosphors and the effect of Eu3+ ions doping[J]. Bull. Mater. Sci., 2024,47(3):172-181. doi: 10.1007/s12034-024-03263-8

    6. [6]

      QIANG J W, HOU L, WANG L, LI Y L, RUN H H, LI J R, LIAO S, HUANG Y H. Boosting the red emission and luminescent thermostability of GdPO4: Eu3+ phosphors by coating with graphitic carbon nitride[J]. J. Lumin., 2024,273120652. doi: 10.1016/j.jlumin.2024.120652

    7. [7]

      MA R B, CHENG K, LI B, YANG C, CAO B, GONG X Y, DENG C Y, HUANG W C. Adjustable emission and energy transfer in perovskite structure La2MgSnO6: Eu3+, Bi3+ phosphors for multifunctional applications[J]. J. Alloy. Compd., 2024,1002175384. doi: 10.1016/j.jallcom.2024.175384

    8. [8]

      YE H C, LIU Z P, ZANG W, XIE W, FENG Z Y, YE Y, CHEN Y B, SHENG X. Luminescence and energy transfer in Dy3+/Eu3+ co-doped Li3Ba2Gd3(MoO4)8 phosphors[J]. Polyhedron, 2024,260117063. doi: 10.1016/j.poly.2024.117063

    9. [9]

      SHARMA V D, KHAJURIA P, KHAJURI A, PRAKASH R, CHOUDHARY R. Photoluminescent and X-ray photoemission studies of Eu3+-doped kosnarite KZr2(PO4)3 nanophosphor and its Judd-Ofelt analysis[J]. J. Nanopart. Res., 2024,26(7):166-181. doi: 10.1007/s11051-024-06073-5

    10. [10]

      VASANTHI B, GOPAKUMAR N, ANJANA P S. Thermally stable and red emitting bismuth ions sensitized SrGa2O4: Eu3+ phosphors for phosphor converted WLED applications[J]. Solid State Sci., 2024,151107526. doi: 10.1016/j.solidstatesciences.2024.107526

    11. [11]

      LAKSHMI K, RAO M C, DUBEY V. Structural and thermoluminescence glow curve analysis of Eu3+ doped LaCePO4 phosphor[J]. Russ. Phys. J., 2024,67(7):993-999. doi: 10.1007/s11182-024-03208-y

    12. [12]

      LI Z, CHENG J L, WANG Y N, WU K Y, CAO J. Rapid synthesis of BaMoO 4: Eu3+ red phosphors using microwave irradiation[J]. Luminescence, 2023,38(8):1414-1421. doi: 10.1002/bio.4510

    13. [13]

      HU S Z, YANG F G, REN H K, WU Y H, YAN F P, YU Y L. High efficiency multifunctional red florescence phosphor of Mn4+ and Eu3+ co-doped Li0.5SrMgWO6[J]. Appl. Phys. A, 2024,130(6):459-467. doi: 10.1007/s00339-024-07625-1

    14. [14]

      LI Y H, ZHANG X G. Synthesis and efficient multicolor luminescence property of single-phase Eu3+ and Tb3+-doped Gd2(MoO4)3[J]. J. Mater. Sci.: Mater. Electron., 2024,35(6):447-460. doi: 10.1007/s10854-024-12242-y

    15. [15]

      TÜREMIŞ M, KESKIN İ Ç, KATI M İ, ÇETIN A, AY K, KIBAR R. Comprehensive study on structural, thermal, morphological and luminescence (RL, PL, TL) properties of CaLa2(WO4)4: Tb3+, Dy3+ phosphors synthesized via sol gel method[J]. Ceram. Int., 2021,47(18):25708-25720. doi: 10.1016/j.ceramint.2021.05.297

    16. [16]

      BABY B, THOMAS S, T K, JOSE J, BIJU P, JOSEPH C. Optimized microwave assisted synthesis of La2(WO4)3: Tb3+ phosphors and analysis of photoluminescence behavior[J]. J. Lumin., 2023,254119510. doi: 10.1016/j.jlumin.2022.119510

    17. [17]

      WANG D, GUAN X F, LI G F. A novel scheelite-type LiCaGd(WO4)3: Eu3+ red phosphors with prominent thermal stability and high quantum efficiency[J]. Int. J. Appl. Ceram. Technol., 2023,20(5)31713182.

    18. [18]

      BABY B, THOMAS S J, JOSE J, TTHOMAS K, PUNATHIL P, UNNIKRISHNAN N, BIJU P, JOSEPH C. Luminescence studies and Judd Ofelt parameterization of Dy3+ activated La2(WO4)3 yellow phosphor[J]. Inorg. Chem. Commun., 2024,165:165-178.

    19. [19]

      BABY B, LIZBATHU A V, NAIR S P, ABRAHAM N D, SUDARSAN V, GOPINATH A, BIJU P R, JOSEPH C. Photoluminescence characteristics of microwave synthesized La2(WO4)3: Eu3+ phosphor and evaluation of its radiative parameters[J]. Ceram. Int., 2024,50(7):11500-11509. doi: 10.1016/j.ceramint.2024.01.050

    20. [20]

      HAN L L, WANG L J, NING Y Y, ZHOU W Q, MIAO Y F, TIAN S Y, FAN Y C, HE Z Q, CI Z P. Morphology controlled synthesis and sensitive temperature sensing performance of Gd2(WO4)3: Er3+, Yb3+[J]. Mater. Res. Bull., 2023,168112460. doi: 10.1016/j.materresbull.2023.112460

    21. [21]

      NIU Y D, WANG Y Z, ZHU K M, YE W G, FENG Z, LIU H, YI X, WANG Y H, YUAN X Y. Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12: Eu3+ phosphors[J]. Chin. Phys. B, 2023,32028703. doi: 10.1088/1674-1056/ac70b8

    22. [22]

      QIANG W, JUN W, ZHENG J Y, XIA Q S, WEI C L, HUANG X X, MU Z F, WU F G. Exploration of upconversion thermal enhancement mechanism and application on temperature sensing of Sc2W3O12: Yb3+, Er3+ materials[J]. J. Lumin., 2022,252119306. doi: 10.1016/j.jlumin.2022.119306

    23. [23]

      FU B, YAN H K, LI F Y, LIAO Z Q, QIU B, GONG G L, HUANG H P, SUN Y J, WEN H R, LIAO J S. Simultaneously tuning the luminescent color and realizing an optical temperature sensor by negative thermal expansion in Sc2(WO4)3: Tb/Eu phosphors[J]. Dalton Trans., 2024,53(2):798-807. doi: 10.1039/D3DT03162D

    24. [24]

      WEI Y, PAN Y, ZHOU E L, YUAN Z, SONG H, WANG Y L, ZHOU J, RUI J H, XU M J, NING L X, LIU Z N, WANG H Y, XIE X J, TANG X B, SU H Q, XING X R, HUANG L. Frenkel defect-modulated anti-thermal quenching luminescence in lanthanide-doped Sc2(WO4)3[J]. Angew. Chem.-Int. Edit., 2023,62(27)e202303482. doi: 10.1002/anie.202303482

    25. [25]

      LI J, XU Y C, HONG J H, LIU Y, ZHANG X Y. Synthesis and luminescence properties of an anomalous thermal burst Sr2Ga2SiO7: Sm3+ red phosphor[J]. Chin. J. Lumin., 2024,45(9):1456-1466.

    26. [26]

      JIANG X Q, LONG Z W, YANG J Y, LI J J, SONG H, XU Y S, ZHOU D C, YANG Y, WANG Q, QIU J B. Differential response under X-ray/UV dual-mode excitation in singlecomponent defect state phosphor X-ray imaging and wavelength-multiplexing information storage[J]. Chem. Eng. J., 2024,494152868. doi: 10.1016/j.cej.2024.152868

    27. [27]

      LIU Z, HUANG Y P, CHEN T H, FENG W L. Emission enhancement of Eu3+ doped Ba2Zn(BO3)2 by adding charge compensators[J]. J. Solid State Chem., 2024,329124431. doi: 10.1016/j.jssc.2023.124431

    28. [28]

      TIAN T, WANG Z Y, MAO C L, CHEN M H, CHU Y Q, LI Y. Structure, luminescence properties and anti-thermal quenching of a novel Eu3+-activated red phosphor based on the negative thermal expansion material In0.5Sc1.5(MoO4)3[J]. J. Alloy. Compd., 2024,973172887. doi: 10.1016/j.jallcom.2023.172887

    29. [29]

      SHARMA P, MADDA J P, VAIDYANATHAN S. Narrow-band dazzling red emitting (LiCaLa(MoO4)3: Eu3+) phosphor with scheelite structure for hybrid white LEDs and LiCaLa(MoO4)3: Sm3+, Eu3+ based deep-red LEDs for plant growth applications[J]. Dalton Trans., 2023,52(41):15043-15056. doi: 10.1039/D3DT02716C

    30. [30]

      LING Y, CUI R R, GUO X, LINGHU P, ZHAO R L, DENG C Y. Thermally stable and color tunable novel single phase phosphor Ca2GaTaO6: Dy3+, Sm3+ for indoor lighting applications[J]. Ceram. Int., 2024,50(9):14188-14199. doi: 10.1016/j.ceramint.2024.01.325

    31. [31]

      LIU Z, WEI Z, WEI X, FENG Z Y, CHEN Y J, HU Z F, XIONG G T, YANG Y. Synthesis and luminescent properties of Na5(La, Y) (MoO4)4: Sm3+ phosphors for solid state lighting application[J]. J. Lumin., 2023,263120136. doi: 10.1016/j.jlumin.2023.120136

  • 加载中
    1. [1]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    2. [2]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    3. [3]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    4. [4]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    5. [5]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    6. [6]

      Hongzhi Zhang Hong Li Asif Ali Haider Junpeng Li Zhi Xie Hongming Jiang Conglin Liu Rui Wang Jing Zhu . An unexpected role of lanthanide substitution in thermally responsive phosphors NaLnTe2O7: Eu3+ (Ln = Y and Gd). Chinese Journal of Structural Chemistry, 2025, 44(2): 100509-100509. doi: 10.1016/j.cjsc.2024.100509

    7. [7]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    10. [10]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    11. [11]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    12. [12]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    13. [13]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    14. [14]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238

    15. [15]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    16. [16]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    17. [17]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    18. [18]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    19. [19]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    20. [20]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

Metrics
  • PDF Downloads(1)
  • Abstract views(242)
  • HTML views(63)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return