Citation: Qiaowen CHANG, Ke ZHANG, Guangying HUANG, Nuonan LI, Weiping LIU, Fuquan BAI, Caixian YAN, Yangyang FENG, Chuan ZUO. Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311 shu

Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups

Figures(6)

  • To study the effect of substituents on the photo-physical properties of iridium phosphorescent complexes, four identical methyl (Me), methoxy (MeO), fluorine (F), or trifluoromethyl (CF3) groups were introduced into the 2and 4-positions of the two phenyl groups onto the 2, 4-bis(2, 4-disubstituted phenyl) pyridine [2, 4-(2, 4-2R-phenyl)2py, R=Me (HL1), MeO (HL2), F (HL3), CF3 (HL4)] main ligands at the same time. Four iridium phosphorescent complexes (Ln)2Ir(acac) [n=1 (Ir1), 2 (Ir2), 3 (Ir3), 4(Ir4)] were synthesized by using HL1, HL2, HL3, or HL4 as the main ligand and acetylacetone (Hacac) as the auxiliary ligand. The composition, spatial structure, and molecular stacking of all iridium phosphorescent complexes were characterized by elemental analysis, nuclear magnetic resonance spectroscopy (1H NMR and 13C NMR), and single-crystal X-ray diffraction. The results indicated that all four iridium phosphorescent complexes exhibit slightly distorted octahedral configurations. The central iridium(Ⅲ) coordinates with the C and N atoms of the two main ligands to form a five-membered chelating ring while coordinating with the two oxygen atoms of the acetylacetone auxiliary ligand to form a stable six-membered chelating ring. The results are consistent with the chemical structure of the target compound. A comprehensive and systematic study was conducted on the photophysical properties of iridium phosphorescent complexes through solution and solid photoluminescence spectroscopy, UV Vis absorption spectroscopy, fluorescence lifetime, and theoretical calculations. The complexes Ir1, Ir2, Ir3, and Ir4 in solution with the photoluminescence quantum yields of 68%, 83%, 88%, and 81% exhibited maximum emission peaks at 537, 515, 514, and 553 nm, fluorescence lifetime of 26.75, 163.93, 64.50, and 330.39 ns, and in solid with maximum emission peaks at 536, 520, 520, and 546 nm, respectively. Four iridium phosphorescent complexes have different electron cloud distribution characteristics, and substituents can regulate the distribution of electron clouds on the benzene ring, further achieving the control of photophysical properties and chemical structure, such as emission wavelength in solution and solid-state, emission color, fluorescence lifetime, and molecular stacking.
  • 加载中
    1. [1]

      TSUJIMURA T. OLED displays fundamentals and application[M]. Hoboken: John Wiley & Sons, Inc., 2012: 5-30

    2. [2]

      REINEKE S, LINDER F, SCHWARTZ G, SEIDLER N, WALZER K, LÜSSEM B, LEO K. White organic light-emitting diodes with fluorescent tube efficiency[J]. Nature, 2009,459(7244):234-238. doi: 10.1038/nature08003

    3. [3]

      HELANDER M G, WANG Z B, QIU J, GREINER M T, PUZZO D P, LIU Z W, LU Z H. Chlorinated indium tin oxide electrodes with high work function for organic device compatibility[J]. Science, 2011,332(6032):944-947. doi: 10.1126/science.1202992

    4. [4]

      TANG C W, VANSLYKE S A. Organic electroluminescent diodes[J]. Appl. Phys. Lett., 1987,51(12):913-915. doi: 10.1063/1.98799

    5. [5]

      LIU Z W, BIAN Z Q, HUANG C H. The electroluminescence of metal complexes[M]. Beijing: Science Press, 2019: 78-96

    6. [6]

      ZHOU Y H, XU Q L, LIU C L, XU J J. Synthesis and opto-electronic property of three green iridium(Ⅲ) complexes[J]. Chinese J. Inorg. Chem., 2020,36(7):1267-1274.  

    7. [7]

      DILUZIO S, CONNELL T U, MDLULI V, KOWALEWSKI J F, BERNHARD S. Understanding Ir(Ⅲ) photocatalyst structure-activity relationships: A highly parallelized study of light-driven metal reduction processes[J]. J. Am. Chem. Soc., 2022,144(3):1431-1444. doi: 10.1021/jacs.1c12059

    8. [8]

      CHEUNG K P S, SARKAR S, GEVORGYAN V. Visible light‑ induced transition metal catalysis[J]. Chem. Rev., 2022,122(2):1543-1625. doi: 10.1021/acs.chemrev.1c00403

    9. [9]

      DONG Z, MACMILLAN D W C. Metallaphotoredox-enabled deoxygenative arylation of alcohols[J]. Nature, 2021,598(7881):451-456. doi: 10.1038/s41586-021-03920-6

    10. [10]

      CHANG Q W, CUI H, YAN C X, JIANG J, ZHAO J, YE Q S, YU J, LIU W P, CHEN J L. The effect of structure of β-diketonate ligand on the luminous performance of platinum group metals phosphorescent complex[J]. Precious Metals, 2014,35(3):88-93. doi: 10.3969/j.issn.1004-0676.2014.03.021

    11. [11]

      KING K A, SPELLANE P J, WATTS R J. Excited-state properties of a triply ortho-metalated iridium(Ⅲ) complex[J]. J. Am. Chem. Soc., 1985,107(5):1431-1432. doi: 10.1021/ja00291a064

    12. [12]

      BALDO M A, LAMANSKY S, BURROWS P E, THOMPSON M E, FORREST S R. Very high-efficiency green organic light-emitting devices based on electro-phosphorescence[J]. App. Phys. Lett., 1999,75(1):4-6. doi: 10.1063/1.124258

    13. [13]

      TAMAYO A B, ALLEYNE B D, DJUROVICH P I, LAMANSKY S, TSYBA I. Synthesis and characterization of facial and meridional tris-cyclometalated iridium(Ⅲ) complexes[J]. J. Am. Chem. Soc., 2003,125(24):7377-7387. doi: 10.1021/ja034537z

    14. [14]

      YANG X L, ZHOU G J, WONG W Y. Functionalization of phosphorescent emitters and their host material by main-group elements for phosphorescent organic light-emitting devices[J]. Chem. Soc. Rev., 2015,44(23):8484-8575. doi: 10.1039/C5CS00424A

    15. [15]

      HWANG J, JI S B, CHEON H, YOOK K S, KWON S K, KIM Y H. Orange electrophosphorescence based on bis(3, 5-dimethylphenyl)pyridine iridium(Ⅲ) complexes for non-halogenated solution processable phosphorescent organic light-emitting diode[J]. Dyes Pigment., 2018,149:719-727. doi: 10.1016/j.dyepig.2017.11.029

    16. [16]

      CHEON H J, JOO C W, LEE D Y, HUSEYNOVA G, LEE J H, LEE J, KIM Y H. Highly efficient orange phosphorescent organic light-emitting diodes with (4-(3, 5-dimethylphenyl)-2-(m-tolyl)pyridine-based iridium complex[J]. Dyes Pigment., 2021,186109006. doi: 10.1016/j.dyepig.2020.109006

    17. [17]

      CHANG Q W, CHEN Z A, FENG L, JIANG W, YAN C X, LIU W P, BAI F Q. Synthesis and photophysical properties of phenylquinoline iridium complexes controlled by electron-withdrawing groups[J]. Chinese J. Inorg. Chem., 2023,39(2):255-262.

    18. [18]

      CHANG Q W, CHEN Z A, WANG Z A, JIANG J, YU J, LIU W P, YAN C X, CHEN L. Iridium phosphorescent complexes based on the modified phenylquinoline ligand and their high-efficiency pure red organic electroluminescent device[J]. Chinese Journal of Luminescence, 2022,43(10):1583-1591. doi: 10.37188/CJL.20220134

    19. [19]

      CHANG Q W, CHEN Z A, YAN C X, LIU W P, FENG Y Y. The effect of substituent position on photophysical properties of iridium phosphorescent complexes based on substituted 2, 4-diphenylpyridine[J]. Spectrosc. Spectr. Anal., 2024,44(2):504-509.

    20. [20]

      FANG K H, WU L L, HUANG Y T, YANG C H, SUN I W. Color tuning of iridium complexes—part Ⅰ: Substituted phenylisoquinoline-based iridium complexes as the triplet emitter[J]. Inorg. Chim. Acta, 2006,359(2):441-450. doi: 10.1016/j.ica.2005.10.003

    21. [21]

      TAO P. Design, synthesis, and excited states tuning of highly efficient iridium(Ⅲ) complexes for applications in optoelectronics[D]. Taiyuan: Taiyuan University of Technology, 2017: 41-79

    22. [22]

      WANG J, BAI F Q, XIA B H, SUN L, ZHANG H X. Theoretical understanding of ruthenium􀃭 based fluoride sensor derived from 4, 5-bis(benzimidazol-2-yl) imidazole (H3ImBzim) and bipyridine: Electronic structure and binding nature[J]. J. Phys. Chem. A, 2011,115(10):1985-1991. doi: 10.1021/jp1088383

    23. [23]

      XIE M, CHEN J, BAI F Q, WEI W, ZHANG H X. Theoretical studies on the interaction of ruthenium sensitizers and redox couple in different deprotonation situations[J]. J. Phys. Chem. A, 2014,118(12):2244-2252. doi: 10.1021/jp410220q

    24. [24]

      LEE C, YANG W, PARR R G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density[J]. Phys. Rev. B, 1988,37(2):785-789. doi: 10.1103/PhysRevB.37.785

  • 加载中
    1. [1]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    2. [2]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    3. [3]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    4. [4]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    5. [5]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    6. [6]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    7. [7]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    8. [8]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    9. [9]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    10. [10]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    11. [11]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    12. [12]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    13. [13]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    14. [14]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . 二维材料基超级电容器的容量与倍率性能提升策略. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    15. [15]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    16. [16]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    17. [17]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    18. [18]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    19. [19]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    20. [20]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

Metrics
  • PDF Downloads(7)
  • Abstract views(465)
  • HTML views(98)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return