Citation: Wenli FENG, Lu ZHAO, Yunfeng BAI, Feng FENG. Research progress on ultralong room temperature phosphorescent carbon dots[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308 shu

Research progress on ultralong room temperature phosphorescent carbon dots

Figures(6)

  • Compared with traditional room temperature phosphorescent (RTP) materials, room temperature phosphorescent carbon dots (RTP-CDs) have the advantages of good biocompatibility, low toxicity, and stable performance, and have been favored by researchers in recent years. However, its phosphorescent lifetime is usually short, in the millisecond range, limiting its application. Therefore, promoting the intersystem crossing of carbon dots and stabilizing the excited triplet state of carbon dots is the key to realizing the emission and application of ultralong room temperature phosphorescent (URTP). Based on the latest research progress of ultralong room temperature phosphorescent carbon dots (URTP-CDs) in recent years, this paper summarizes its construction strategies and its applications in anti-counterfeiting and information encryption, sensing, biological imaging, and light-emitting diode, and looks forward to its development prospects.
  • 加载中
    1. [1]

      LEWIS G N, KASHA M. Phosphorescence and the triplet state[J]. J. Am. Chem. Soc., 1944,66(12):2100-2116. doi: 10.1021/ja01240a030

    2. [2]

      ROTH M. Phosphorescence à température ordinaire: Un moyen sélec-tif et non destructif pour la détection de certains composés aroma-tiques en chroatographie sur papier et sur couche de cellulose[J]. J. Chromatogr. A, 1967,30:276-278. doi: 10.1016/S0021-9673(00)84159-X

    3. [3]

      PAYNTER R A, WELLONS S L, WINEFORDNER J D. New method of analysis based on room-temperature phosphorescence[J]. Anal. Chem., 1974,46(6):736-738. doi: 10.1021/ac60342a044

    4. [4]

      WANG Q, TAN Q X, ZHAO S J, ZHANG K, CHEN J M, LAN M H. Dual-responsive carbon dots-based luminophore for ratiometric fluo-rescence and room-temperature phosphorescence detection of oxytet-racycline[J]. Chem. Eng. J., 2023,470144061. doi: 10.1016/j.cej.2023.144061

    5. [5]

      LI X Y, LIANG W Q, GAO Y W, SHI Y Q, ZHANG C, ZHANG K. Employing phosphorescent carbon dots@silica for glutathione sensing with low background interference[J]. Sens. Actuator B-Chem., 2024,410135680. doi: 10.1016/j.snb.2024.135680

    6. [6]

      BAO X, LIU Z X, TIAN Z, SUN W Q, WANG H, YUAN X. Ultrastable and long-lived multi-color room temperature phosphorescent carbon dot and silica composites for data encryption and anti-counter-feiting[J]. J. Lumines., 2024,267120408. doi: 10.1016/j.jlumin.2023.120408

    7. [7]

      HAO C X, BAI Y F, ZHAO L, BAO Y Y, BIAN J N, XU H, ZHOU T, FENG F. Durable room-temperature phosphorescence of nitrogen-doped carbon dots-silica composites for Fe3+ detection and anti-coun-terfeiting[J]. Dyes Pigment., 2022,198109955. doi: 10.1016/j.dyepig.2021.109955

    8. [8]

      CUI M Y, DAI P L, DING J L, LI M J, SUN R, JIANG X, WU M L, PANG X K, LIU M Z, ZHAO Q, SONG B, HE Y. Millisecond-range time-resolved bioimaging enabled through ultralong aqueous phospho-rescence probes[J]. Angew. Chem.-Int. Edit., 2022,61e202200172. doi: 10.1002/anie.202200172

    9. [9]

      ZHOU T, HAO C X, BAI Y F, CHEN P L, MA T, HONG G F, YIN C G, FENG F. Multiple immobilized borate composites achieving color-tunable long afterglow in aqueous media for bioimaging and anti-coun-terfeiting[J]. Microchem. J., 2024,201110653. doi: 10.1016/j.microc.2024.110653

    10. [10]

      YAO Q, WU H Y, LIANG J J, WANG C L, JIN Y H, HU Y H, TANG Y H. Generating triplet states in carbon quantum dots con-fined in mesoporous MgO for phosphorescence and photocatalysis applications[J]. Sci. China-Mater., 2024,67(1):170-178. doi: 10.1007/s40843-023-2679-x

    11. [11]

      LIU Y S, ZHOU S Y, TU D T, CHEN Z, HUANG M D, ZHU H M, MA E, CHEN X Y. Amine-functionalized lanthanide-doped zirconia nanoparticles: Optical spectroscopy, time-resolved fluorescence reso-nance energy transfer biodetection, and targeted imaging[J]. J. Am. Chem. Soc., 2012,134(36):15083-15090. doi: 10.1021/ja306066a

    12. [12]

      ABDUKAYUM A, CHEN J T, ZHAO Q, YAN X P. Functional near infrared-emitting Cr3+/Pr3+Co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo target-ed bioimaging[J]. J. Am. Chem. Soc., 2013,135(38):14125-14133. doi: 10.1021/ja404243v

    13. [13]

      BOLTON O, LEE K, KIM H J, LIN K Y, KIM J. Activating efficient phosphorescence from purely organic materials by crystal design[J]. Nat. Chem., 2011,3(3):205-210. doi: 10.1038/nchem.984

    14. [14]

      YUAN L, LIU L Z, MI Z, CHEN M, BAI Y F, QIN J, FENG F. A rati-ometric sensor based on dual-emission carbon dots sensitive detec-tion of amaranth[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2023,302123058. doi: 10.1016/j.saa.2023.123058

    15. [15]

      YUAN L, LIU L Z, BAI Y F, QIN J, CHEN M, FENG F. A novel rati-ometric fluorescent probe for detection of L-glutamic acid based on dual-emission carbon dots[J]. Talanta, 2022,245123416. doi: 10.1016/j.talanta.2022.123416

    16. [16]

      LIU L Z, CHEN M, YUAN L, MI Z, LI C Q, LIU Z X, CHEN Z Z, WANG L G, FENG F, WU L Q. A novel ratiometric fluorescent probe based on dual-emission carbon dots for highly sensitive detec-tion of salicylic acid[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2023,303123232. doi: 10.1016/j.saa.2023.123232

    17. [17]

      KONG T T, ZHOU R H, ZHANG Y J, HAO L Y, CAI X X, ZHU B F. AS1411 aptamer modified carbon dots via polyethylenimine-assisted strategy for efficient targeted cancer cell imaging[J]. Cell Prolif., 2020,53(1)e12713. doi: 10.1111/cpr.12713

    18. [18]

      JIANG K, WANG Y C, LIN C J, ZHENG L C, DU J R, ZHUANG Y X, XIE R J, LI Z J, LIN H W. Enabling robust and hour-level organ-ic long persistent luminescence from carbon dots by covalent fixation[J]. Light-Sci Appl., 2022,11(1)80. doi: 10.1038/s41377-022-00767-y

    19. [19]

      TAN J, YE Y X, REN X D, ZHAO W, YUE D M. High pH-induced efficient room-temperature phosphorescence from carbon dots in hydrogen-bonded matrices[J]. J. Mater. Chem. C, 2018,6(29):7890-7895. doi: 10.1039/C8TC02012D

    20. [20]

      ZHENG C Y, TAO S Y, ZHAO X X, KANG C Y, YANG B. Crosslink-enhanced emission-dominated design strategy for constructing self-protective carbonized polymer dots with near-infrared room-tempera-ture phosphorescence[J]. Angew. Chem.-Int. Edit., 2024,63(44)e202408516. doi: 10.1002/anie.202408516

    21. [21]

      QU Y N, XU X J, HUANG R L, QI W, SU R X, HE Z M. Enhanced photocatalytic degradation of antibiotics in water over functionalized N, S-doped carbon quantum dots embedded ZnO nanoflowers under sunlight irradiation[J]. Chem. Eng. J., 2020,382123016. doi: 10.1016/j.cej.2019.123016

    22. [22]

      DENG Y H, ZHAO D X, CHEN X, WANG F, SONG H, SHEN D Z. Long lifetime pure organic phosphorescence based on water soluble carbon dots[J]. Chem. Commun., 2013,49(51):5751-5753. doi: 10.1039/c3cc42600a

    23. [23]

      HUANG L K, CHEN B, ZHANG X P, TRINDLE C O, LIAO F, WANG Y C, MIAO H, LUO Y, ZHANG G Q. Proton-activated "off-on" room-temperature phosphorescence from purely organic thio-ethers[J]. Angew. Chem.-Int. Edit., 2018,57(49):16046-16050. doi: 10.1002/anie.201808861

    24. [24]

      LI J R, WU Y Z, GONG X. Evolution and fabrication of carbon dot-based room temperature phosphorescence materials[J]. Chem. Sci., 2023,14(14):3705-3729. doi: 10.1039/D3SC00062A

    25. [25]

      WEI X Y, YANG J W, HU L L, CAO Y, LAI J, CAO F F, GU J J, CAO X F. Recent advances in room temperature phosphorescent car-bon dots: Preparation, mechanism, and applications[J]. J. Mater. Chem. C, 2021,9(13):4425-4443. doi: 10.1039/D0TC06031C

    26. [26]

      ZUO K, LIU W F, LIU X J, LIU X G. Phosphorescence of carbon dot: The intrinsic mechanism and recent progress[J]. Carbon Trends, 2023,12100278. doi: 10.1016/j.cartre.2023.100278

    27. [27]

      ZHOU S J, WANG F X, FENG N, XU A X, SUN X F, ZHOU J, LI H G. Room temperature phosphorescence carbon dots: Preparations, regulations, and applications[J]. Small, 2023,19(33)e2301240. doi: 10.1002/smll.202301240

    28. [28]

      JIA J, LU W J, GAO Y F, LI L, DONG C, SHUANG S M. Recent advances in synthesis and applications of room temperature phospho-rescence carbon dots[J]. Talanta, 2021,231122350. doi: 10.1016/j.talanta.2021.122350

    29. [29]

      JABLONSKI A. Efficiency of anti-stokes fluorescence in dyes[J]. Nature, 1933,131:839-840.  

    30. [30]

      BARYSHNIKOV G, MINAEV B, ÅGREN H. Theory and calcula-tion of the phosphorescence phenomenon[J]. Chem. Rev., 2017,117(9):6500-6537. doi: 10.1021/acs.chemrev.7b00060

    31. [31]

      WU H L, KANG Y X, JIANG S N, WANG K T, QU L J, YANG C L. Hectogram-scale synthesis of visible light excitable room tempera-ture phosphorescence carbon dots[J]. Small, 2024,20(46)2402796. doi: 10.1002/smll.202402796

    32. [32]

      GAO Y F, ZHANG H L, SHUANG S M, DONG C. Visible-light-excited ultralong-lifetime room temperature phosphorescence based on nitrogen-doped carbon dots for double anticounterfeiting[J]. Adv. Opt. Mater., 2020,8(7)1901557. doi: 10.1002/adom.201901557

    33. [33]

      FENG Q, XIE Z G, ZHENG M. Colour-tunable ultralong-lifetime room temperature phosphorescence with external heavy-atom effect in boron-doped carbon dots[J]. Chem. Eng. J., 2021,420127647. doi: 10.1016/j.cej.2020.127647

    34. [34]

      DING Y F, WANG X L, TANG M, QIU H B. Tailored fabrication of carbon dot composites with full-color ultralong room-temperature phosphorescence for multidimensional encryption[J]. Adv. Sci., 2022,9(3)2103833. doi: 10.1002/advs.202103833

    35. [35]

      JIANG K, WANG Y H, CAI C Z, LIN H W. Conversion of carbon dots from fluorescence to ultralong room-temperature phosphores-cence by heating for security applications[J]. Adv. Mater., 2018,30(26)1800783. doi: 10.1002/adma.201800783

    36. [36]

      WANG Z F, SHEN J, SUN J Z, XU B, GAO Z H, WANG X, YAN L T, ZHU C F, MENG X G. Ultralong-lived room temperature phospho-rescence from N and P codoped self-protective carbonized polymer dots for confidential information encryption and decryption[J]. J. Mater. Chem. C., 2021,9(14):4847-4853. doi: 10.1039/D0TC05845A

    37. [37]

      LONG P, FENG Y Y, CAO C, LI Y, HAN J K, LI S W, PENG C, LI Z Y, FENG W. Self-protective room-temperature phosphorescence of fluorine and nitrogen codoped carbon dots[J]. Adv. Funct. Mater., 2018,28(37)1800791. doi: 10.1002/adfm.201800791

    38. [38]

      LIU F, LI Z Y, LI Y, FENG Y Y, FENG W. Room-temperature phos-phorescent fluorine-nitrogen co-doped carbon dots: Information encryption and anti-counterfeiting[J]. Carbon, 2021,181:9-15. doi: 10.1016/j.carbon.2021.05.023

    39. [39]

      CHEN Z P, LIANG X M, HE D, HU M, WEN L. The synthesis and application of an excitation-dependent ultra-long lifetime room tem-perature phosphorescence carbon dot composite[J]. New J. Chem., 2023,47(27):12688-12696. doi: 10.1039/D3NJ01775C

    40. [40]

      CHEN L, ZHAO S B, WANG Y, YU S P, YANG Y Z, LIU X G. Long-lived room-temperature phosphorescent complex of B, N, P co-doped carbon dots and silica for afterglow imaging[J]. Sens. Actuator B-Chem., 2023,390133946. doi: 10.1016/j.snb.2023.133946

    41. [41]

      JIANG K, WANG Y H, GAO X L, CAI C Z, LIN H W. Facile, quick, and gram-scale synthesis of ultralong-lifetime room-temperature-phosphorescent carbon dots by microwave irradiation[J]. Angew. Chem.-Int. Edit., 2018,57(21):6216-6220. doi: 10.1002/anie.201802441

    42. [42]

      CAO Q, LIU K K, LIANG Y C, SONG S Y, DENG Y, MAO X, WANG Y, ZHAO W B, LOU Q, SHAN C X. Brighten triplet exci-tons of carbon nanodots for multicolor phosphorescence films[J]. Nano Lett., 2022,22(10):4097-4105. doi: 10.1021/acs.nanolett.2c00788

    43. [43]

      ZHANG H Y, LIU K K, LIU J C, WANG B L, LI C Y, SONG W, LI J Y, HUANG L, YU J H. Carbon dots-in-zeolite via in-situ solvent-free thermal crystallization: Achieving high-efficiency and ultralong after-glow dual emission[J]. CCS Chem., 2020,2(3):118-127. doi: 10.31635/ccschem.020.201900099

    44. [44]

      YU X W, LIU K K, ZHANG H Y, WANG B L, YANG G J Y, LI J, YU J H. Lifetime-engineered phosphorescent carbon dots-in-zeolite composites for naked-eye visible multiplexing[J]. CCS Chem., 2021,3(12):252-264. doi: 10.31635/ccschem.020.202000639

    45. [45]

      XU B, WANG Z F, SHEN J, LI J, JIA Y H, JIANG T L, GAO Z H, WANG X, MENG X G. Metal-organic framework-activated full-color room-temperature phosphorescent carbon dots with a wide range of tunable lifetimes for 4D coding applications[J]. J. Mater. Chem. C, 2022,126(28):11701-11708.  

    46. [46]

      SUN Y Q, LIU S T, SUN L Y, WU S S, HU G Q, PANG X L, SMITH A T, HU C F, ZENG S S, WANG W X, LIU Y L, ZHENG M T. Ul-tralong lifetime and efficient room temperature phosphorescent car-bon dots through multi-confinement structure design[J]. Nat. Commun., 2020,11(1)5591. doi: 10.1038/s41467-020-19422-4

    47. [47]

      LIAO Z X, WANG Y H, LU Y, ZENG R X, LI L, CHEN H, SONG Q W, WANG K Z, ZHENG J P. Covalently hybridized carbon dots@mesoporous silica nanobeads as a robust and versatile phos-phorescent probe for time-resolved biosensing and bioimaging[J]. Analyst, 2024,149(5):1473-1480. doi: 10.1039/D3AN01935G

    48. [48]

      LIANG Y C, GOU S S, LIU K K, WU W J, GUO C Z, LU S Y, ZANG J H, WU X Y, LOU Q, DONG L, GAO Y F, SHAN C X. Ultralong and efficient phosphorescence from silica confined carbon nanodots in aqueous solution[J]. Nano Today, 2020,34100900. doi: 10.1016/j.nantod.2020.100900

    49. [49]

      JOSEPH J, ANAPPARA A A. Cool white, persistent room-tempera-ture phosphorescence in carbon dots embedded in a silica gel matrix[J]. Phys. Chem. Chem. Phys., 2017,19(23):15137-15144. doi: 10.1039/C7CP02731A

    50. [50]

      TANG G K, ZHANG K, FENG T L, TAO S Y, HAN M, LI R, WANG C C, WANG Y, YANG B. One-step preparation of silica micro-spheres with super-stable ultralong room temperature phosphores-cence[J]. J. Mater. Chem. C, 2019,7(28):8680-8687. doi: 10.1039/C9TC02353D

    51. [51]

      LI W, WU S S, XU X K, ZHUANG J L, ZHANG H R, ZHANG X J, HU C F, LEI B F, KAMINSKI C F, LIU Y L. Carbon dot-silica nanoparticle composites for ultralong lifetime phosphorescence imag-ing in tissue and cells at room temperature[J]. Chem. Mater., 2019,31(23):9887-9894. doi: 10.1021/acs.chemmater.9b04120

    52. [52]

      SUN Y Q, LIU J K, PANG X L, ZHANG X J, ZHUANG J L, ZHANG H R, HU C F, ZHENG M T, LEI B F, LIU Y L. Temperature-responsive conversion of thermally activated delayed fluorescence and room-temperature phosphorescence of carbon dots in silica[J]. J. Mater. Chem. C, 2020,8(17):5744-5751. doi: 10.1039/D0TC00507J

    53. [53]

      CHENG H R, CHEN S, LI M, LU Y F, CHEN H X, FANG X, QIU H J, WANG W S, JIANG C, ZHENG Y H. Ultra-stable dual-color phos-phorescence carbon-dot@silica material for advanced anti-counter-feiting[J]. Dyes Pigment., 2023,208110827. doi: 10.1016/j.dyepig.2022.110827

    54. [54]

      LI W, ZHOU W, ZHOU Z S, ZHANG H R, ZHANG X J, ZHUANG J L, LIU Y L, LEI B F, HU C F. A universal strategy for activating the multicolor room-temperature afterglow of carbon dots in a boric acid matrix[J]. Angew. Chem.-Int. Edit., 2019,58(22):7278-7283. doi: 10.1002/anie.201814629

    55. [55]

      HU G Q, XIE Y X, XU X K, LEI B F, ZHUANG J L, ZHANG X J, ZHANG H R, HU C F, MA W S, LIU Y L. Room temperature phos-phorescence from Si-doped-CD-based composite materials with long lifetimes and high stability[J]. Opt. Express, 2020,28(13):19550-19561. doi: 10.1364/OE.391722

    56. [56]

      LIAO Z X, WANG Y H, WANG J P. Research advance of carbon-dots based hydrophilic room temperature phosphorescent composites[J]. Progress in Chemistry, 2023,35(2):263-73.

    57. [57]

      JIE Y N, GAO Y, YANG G, XI P, LI F C, ZHANG J Y, WANG D, FAN Z B, YAN J, DAI P G, FANG J W. Yellow-emissive carbon dots with long-lifetime room-temperature phosphorescence for infor-mation encryption and bioimaging[J]. ACS Appl. Nano Mater., 2023,6(21):20431-20439. doi: 10.1021/acsanm.3c04567

    58. [58]

      SHI S H, LIU W F, DI Y J, XU Y K, WU T, HUANG X B, WANG M L, LIU X G. High pH stability and ultralong-lived room temperature phosphorescence carbon dots in aqueous environment[J]. Adv. Opt. Mater., 2024,12(16)2302892. doi: 10.1002/adom.202302892

    59. [59]

      GAO Y F, ZHANG H L, JIAO Y, LU W J, LIU Y, HAN H, GONG X J, SHUANG S M, DONG C. Strategy for activating room-temperature phosphorescence of carbon dots in aqueous environments[J]. Chem. Mater., 2019,31(19):7979-7986. doi: 10.1021/acs.chemmater.9b02176

    60. [60]

      LU D, LU K, WEN H T, WEI Z, BIANCO A, WANG G G, ZHANG H Y. Synthesis of visible light excitable carbon dot phosphor-Al2O3 hybrids for anti-counterfeiting and information encryption[J]. Small, 2023,19(31)2207046. doi: 10.1002/smll.202207046

    61. [61]

      LI Q J, ZHOU M, YANG Q F, WU Q, SHI J, GONG A H, YANG M Y. Efficient room-temperature phosphorescence from nitrogen-doped carbon dots in composite matrices[J]. Chem. Mater., 2016,28(22):8221-8227. doi: 10.1021/acs.chemmater.6b03049

    62. [62]

      SHEN J, XU B, WANG Z F, ZHANG J, ZHANG W G, GAO Z H, WANG X, ZHU C F, MENG X G. Aggregation-induced room temper-ature phosphorescent carbonized polymer dots with wide-range tunable lifetimes for optical multiplexing[J]. J. Mater. Chem. C, 2021,9(21):6781-6788. doi: 10.1039/D1TC01057C

    63. [63]

      XU B, JIA Y H, NING H Y, TENG Q, LI C H, FANG X Q, LI J, ZHOU H, MENG X G, GAO Z H, WANG X, WANG Z F, YUAN F L. Visible light-activated ultralong-lived triplet excitons of carbon dots for white-light manipulated anti-counterfeiting[J]. Small, 2024,20(1)2304958. doi: 10.1002/smll.202304958

    64. [64]

      LIANG Y C, LIU K K, WU X Y, LOU Q, SUI L Z, DONG L, YUAN K J, SHAN C X. Lifetime-engineered carbon nanodots for time divi-sion duplexing[J]. Adv. Sci., 2021,8(6)2003433. doi: 10.1002/advs.202003433

    65. [65]

      JIANG K, WANG Y H, LI Z J, LIN H W. Afterglow of carbon dots: Mechanism, strategy and applications[J]. Mater. Chem. Front., 2020,4(2):386-399. doi: 10.1039/C9QM00578A

    66. [66]

      LU C S, SU Q, YANG X M. Ultra-long room-temperature phospho-rescent carbon dots: pH sensing and dual-channel detection of tetra-cyclines[J]. Nanoscale, 2019,11(34):16036-16042. doi: 10.1039/C9NR03989A

    67. [67]

      ZHENG Y, ZHOU Q, YANG Y, CHEN X H, WANG C, ZHENG X, GAO L, YANG C L. Full-color Long-lived room temperature phos-phorescence in aqueous environment[J]. Small, 2022,18(19)2201223. doi: 10.1002/smll.202201223

    68. [68]

      LI J K, FENG Z Y, ZHOU S, ZENG L G, YANG X M. Activating the room-temperature phosphorescence of carbon dots for the dual-signal detection of tetracycline and information encryption[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2024,306123592. doi: 10.1016/j.saa.2023.123592

    69. [69]

      LI T T, LI X Y, ZHENG Y, ZHU P, ZHANG C, ZHANG K, XU J J. Phosphorescent carbon dots as long-lived donors to develop an energy transfer-based sensing platform[J]. Anal. Chem., 2023,95(4):2445-2451. doi: 10.1021/acs.analchem.2c04639

    70. [70]

      HAO C X, BAI Y F, CHEN Z Z, GENG F S, QIN J, ZHOU T, FENG F. Ultralong lifetime room-temperature phosphorescence in aqueous medium from silica confined polymer carbon dots for autolumines-cence-free bioimaging and multilevel information encryption[J]. Dyes Pigment., 2022,197109890. doi: 10.1016/j.dyepig.2021.109890

    71. [71]

      FENG Q, XIE Z G, ZHENG M. Room temperature phosphorescent carbon dots for latent fingerprints detection and in vivo phosphores-cence bioimaging[J]. Sens. Actuator B-Chem., 2022,351130976. doi: 10.1016/j.snb.2021.130976

    72. [72]

      LI Z X, PEI Q, ZHENG Y H, XIE Z G, ZHENG M. Carbon dots for long-term near-infrared afterglow imaging and photodynamic therapy[J]. Chem. Eng. J., 2023,467143384. doi: 10.1016/j.cej.2023.143384

    73. [73]

      WANG Z F, LIU Y, ZHEN S J, LI X X, ZHANG W G, SUN X, XU B Y, WANG X, GAO Z H, MENG X G. Gram-scale synthesis of 41% efficient single-component white-light-emissive carbonized polymer dots with hybrid fluorescence/phosphorescence for white light-emit-ting diodes[J]. Adv. Sci., 2020,7(4)1902688. doi: 10.1002/advs.201902688

    74. [74]

      FU M, LIN L Q, WANG X, YANG X M. Hydrogen bonds and space restriction promoting long-lived room-temperature phosphorescence and its application for white light-emitting diodes[J]. J. Colloid Interface Sci., 2023,639:78-86. doi: 10.1016/j.jcis.2023.02.040

  • 加载中
    1. [1]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    2. [2]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    3. [3]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    4. [4]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    5. [5]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    6. [6]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    7. [7]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    8. [8]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    9. [9]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

    10. [10]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    11. [11]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    12. [12]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    13. [13]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    14. [14]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    15. [15]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    16. [16]

      Peiqi Gao Jiao Zheng LiMiao Chen Yi Zhang . Exploration of the Deep Integration Strategy between Innovation and Entrepreneurship Education and Applied Chemistry Major Courses. University Chemistry, 2024, 39(6): 214-219. doi: 10.3866/PKU.DXHX202310086

    17. [17]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    18. [18]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    19. [19]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    20. [20]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

Metrics
  • PDF Downloads(0)
  • Abstract views(122)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return