Small-size Au nanoparticles anchored on pyrenyl-graphdiyne for N2 electroreduction
- Corresponding author: Tongbu LU, lutongbu@tjut.edu.cn
Citation:
Chang LIU, Chao ZHANG, Tongbu LU. Small-size Au nanoparticles anchored on pyrenyl-graphdiyne for N2 electroreduction[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(1): 174-182.
doi:
10.11862/CJIC.20240305
BROWN K A, HARRIS D F, WILKER M B, RASMUSSEN A, KHADKA N, HAMBY H, KEABLE S, DUKOVIC G, PETERS J W, SEEFELDT L C, KING P W. Light-driven dinitrogen reduction catalyzed by a CdS: Nitrogenase MoFe protein biohybrid[J]. Science, 2016, 352(6284): 448-450
doi: 10.1126/science.aaf2091
CHEN J G, CROOKS R M, SEEFELDT L C, BREN K L, BULLOCK R M, DARENSBOURG M Y, HOLLAND P L, HOFFMAN B, JANIK M J, JONES A K, KANATZIDIS M G, KING P, LANCASTER K M, LYMAR S V, PFROMM P, SCHNEIDER W F, SCHROCK R R. Beyond fossil fuel-driven nitrogen transformations[J]. Science, 2018, 360(6391): eaar6611
doi: 10.1126/science.aar6611
ROSCA V, DUCA M, DE GROOT M T, KOPER M T M. Nitrogen cycle electrocatalysis[J]. Chem. Rev., 2009, 109(6): 2209-2244
doi: 10.1021/cr8003696
ASHIDA Y, ARASHIBA K, NAKAJIMA K, NISHIBAYASHI Y. Molybdenum-catalysed ammonia production with samarium diiodide and alcohols or water[J]. Nature, 2019, 568(7753): 536-540
doi: 10.1038/s41586-019-1134-2
VAN KESSEL M A H J, SPETH D R, ALBERTSEN M, NIELSEN P H, OP DEN CAMP H J M, KARTAL B, JETTEN M S M, LUCKER S. Complete nitrification by a single microorganism[J]. Nature, 2015, 528(7583): 555-559
doi: 10.1038/nature16459
TALUKDAR B, KUO T C, SNEED B Y, LYU L M, LIN H M, CHUANG Y C, CHENG M J, KUO C H. Enhancement of NH3 production in electrochemical N2 reduction by the Cu-rich inner surfaces of beveled CuAu nanoboxes[J]. ACS Appl. Mater. Interfaces, 2021, 13(44): 51839-51848
doi: 10.1021/acsami.1c03454
VAN DAMME M, CLARISSE L, WHITBURN A, HADJI-LAZARO J, HURTMANS D, CLERBAUX C, COHEUR P F. Industrial and agricultural ammonia point sources exposed[J]. Nature, 2018, 564(7734): 99-103
doi: 10.1038/s41586-018-0747-1
LÉGARÉ M A, BÉLANGER-CHABOT G, DEWHURST R D, WELZ E, KRUM-MENACHER I, ENGELS B, BRAUNSCHWEIG H. Nitrogen fixation and reduction at boron[J]. Science, 2018, 359(6378): 896-900
doi: 10.1126/science.aaq1684
ZHANG H R, WANG H J, CAO X Q, CHEN M D, LIU Y L, ZHOU Y T, HUANG M, XIA L, WANG Y, LI T D, ZHENG D D, LUO Y S, SUN S J, ZHAO X, SUN X P. Unveiling cutting-edge developments in electrocatalytic nitrate-to-ammonia conversion[J]. Adv. Mater., 2024, 36(16): 2312746
doi: 10.1002/adma.202312746
HUANG Z L, RAFIQ M, WOLDU A R, TONG Q X, ASTRUC D, HU L S. Recent progress in electrocatalytic nitrogen reduction to ammonia (NRR)[J]. Coord. Chem. Rev., 2023, 478: 214981
doi: 10.1016/j.ccr.2022.214981
MICHALSKY R, AVRAM A M, PETERSON B A, PFROMM P H, PETERSON A A. Chemical looping of metal nitride catalysts: Low-pressure ammonia synthesis for energy storage[J]. Chem. Sci., 2015, 6(7): 3965-3974
doi: 10.1039/C5SC00789E
FOSTER S L, BAKOVIC S I P, DUDA R D, MAHESHWARI S, MILTON R D, MINTEER S D, JANIK M J, RENNER J N, GREENLEE L F. Catalysts for nitrogen reduction to ammonia[J]. Nat. Catal., 2018, 1(7): 490-500
doi: 10.1038/s41929-018-0092-7
MARTÍN A J, SHINAGAWA T, PÉREZ-RAMÍREZ J. Electrocatalytic reduction of nitrogen: From haber-bosch to ammonia artificial leaf[J]. Chem, 2019, 5(2): 263-283
doi: 10.1016/j.chempr.2018.10.010
IULIANELLI A, LIGUORI S, WILCOX J, BASILE A. Advances on methane steam reforming to produce hydrogen through membrane reactors technology: A review[J]. Catal. Rev., 2016, 58(1): 1-35
doi: 10.1080/01614940.2015.1099882
CHOI C, BACK S, KIM N Y, LIM J, KIM Y H, JUNG Y. Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: A computational guideline[J]. ACS Catal., 2018, 8(8): 7517-7525
doi: 10.1021/acscatal.8b00905
DONG K, YAO Y C, LI H B, LI H J W, SUN S J, HE X, WANG Y, LUO Y S, ZHENG D D, LIU Q, LI Q, MA D W, SUN X P, TANG B. H2O2-mediated electrosynthesis of nitrate from air[J]. Nat. Synthesis, 2024, 3: 763-773
doi: 10.1038/s44160-024-00522-8
LI S X, LIANG J, WEI P P, LIU Q, XIE L S, LUO Y L, SUN X P. ITO@TiO2 nanoarray: An efficient and robust nitrite reduction reaction electrocatalyst toward NH3 production under ambient conditions[J]. eScience, 2022, 2(4): 382-388
doi: 10.1016/j.esci.2022.04.008
HAN J R, LIU Z C, MA Y J, CUI G W, XIE F Y, WANG F X, WU Y P, GAO S Y, XU Y H, SUN X P. Ambient N2 fixation to NH3 at ambient conditions: Using Nb2O5 nanofiber as a high-performance electrocatalyst[J]. Nano Energy, 2018, 52: 264-270
doi: 10.1016/j.nanoen.2018.07.045
LU Y H, YANG Y, ZHANG T F, GE Z, CHANG H C, XIAO P S, XIE Y Y, HUA L, LI Q Y, LI H Y, MA B, GUAN N J, MA Y F, CHEN Y S. Photoprompted hot electrons from bulk cross-linked graphene materials and their efficient catalysis for atmospheric ammonia synthesis[J]. ACS Nano, 2016, 10(11): 10507-10515
doi: 10.1021/acsnano.6b06472
SHIPMAN M A, SYMES M D. Recent progress towards the electrosynthesis of ammonia from sustainable resources[J]. Catal. Today, 2017, 268: 57-68
SHE Z W, KIBSGAARD J, DICKENS C F, CHORKENDORFF I, NORSKOV J K, JARAMILLO T F. Combining theory and experiment in electrocatalysis: Insights into materials design[J]. Science, 2017, 355(6321): eaad4998
doi: 10.1126/science.aad4998
PANG Y P, SU C, JIA G H, XU L Q, SHAO Z P. Emerging two- dimensional nanomaterials for electrochemical nitrogen reduction[J]. Chem. Soc. Rev., 2021, 50(22): 12744-12787
doi: 10.1039/D1CS00120E
ZHONG Y, XIONG H L, LOW J X, LONG R, XIONG Y J. Recent progress in electrochemical C—N coupling reactions[J]. eScience, 2023, 3(1): 100086
doi: 10.1016/j.esci.2022.11.002
LI Z, ATTANAYAKE N H, BLACKBURN J L, MILLER E M. Carbon dioxide and nitrogen reduction reactions using 2D transition metal dichalcogenide (TMDC) and carbide/nitride (MXene) catalysts[J]. Energy Environ. Sci., 2021, 14(12): 6242-6286
doi: 10.1039/D1EE03211A
JIANG Y, FU H, LIANG Z, ZHANG Q, DU Y P. Rare earth oxide based electrocatalysts: Synthesis, properties and applications[J]. Chem. Soc. Rev., 2024, 53(2): 714-763
doi: 10.1039/D3CS00708A
TIAN D, DENNY S R, LI K, WANG H, KATTEL S, CHEN J G. Density functional theory studies of transition metal carbides and nitrides as electrocatalysts[J]. Chem. Soc. Rev., 2021, 50(22): 12338-12376
doi: 10.1039/D1CS00590A
OUYANG L, LIANG J, LUO Y S, ZHENG D D, SUN S J, LIU Q, HAMDY M S, SUN X P, YING B W. Recent advances in electrocatalytic ammonia synthesis[J]. Chin. J. Catal., 2023, 50: 6-44
doi: 10.1016/S1872-2067(23)64464-X
MUSHTAQ M A, KUMAR A, LIU W, JI Q Q, DENG Y G, YASIN G, SAAD A, RAZA W, ZHAO J, AJMAL S, WU Y Y, AHMAD M, LASHARI N U R, WANG Y, LI T S, SUN S J, ZHENG D D, LUO Y S, CAI X K, SUN X P. A metal coordination number determined catalytic performance in manganese borides for ambient electrolysis of nitrogen to ammonia[J]. Adv. Mater., 2024, 36(21): 2313086
doi: 10.1002/adma.202313086
TAO H C, CHOI C, DING L X, JIANG Z, HAN Z, JIA M W, FAN Q, GAO Y N, WANG H H, ROBERTSON A W, HONG S, JUNG Y S, LIU S Z, SUN Z Y. Nitrogen fixation by Ru single-atom electrocatalytic reduction[J]. Chem, 2019, 5(1): 204-214
doi: 10.1016/j.chempr.2018.10.007
WANG H J, LI Y H, LI C J, DENG K, WANG Z Q, XU Y, LI X N, XUE H R, WANG L. One-pot synthesis of bi-metallic PdRu tripods as an efficient catalyst for electrocatalytic nitrogen reduction to ammonia[J]. J. Mater. Chem. A, 2019, 7(2): 801-805
doi: 10.1039/C8TA09482A
WANG X J, LUO M, LAN J, PENG M, TAN Y W. Nanoporous intermetallic Pd3Bi for efficient electrochemical nitrogen reduction[J]. Adv. Mater., 2021, 33(18): 2007733
doi: 10.1002/adma.202007733
LIU H M, HAN S H, ZHAO Y, ZHU Y Y, TIAN X L, ZENG J H, JIANG J X, XIA B Y, CHEN Y. Surfactant-free atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction[J]. J. Mater. Chem. A, 2018, 6(7): 3211-3217
doi: 10.1039/C7TA10866D
LI S J, BAO D, SHI M M, WULAN B R, YAN J M, JIANG Q. Amorphizing of Au nanoparticles by CeOx-RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions[J]. Adv. Mater., 2017, 29(33): 1700001
doi: 10.1002/adma.201700001
BAO D, ZHANG Q, MENG F L, ZHONG H X, SHI M M, ZHANG Y, YAN J M, JIANG Q, ZHANG X B. Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle[J]. Adv. Mater., 2017, 29(3): 1604799
doi: 10.1002/adma.201604799
NAZEMI M, PANIKKANVALAPPIL S R, EL-SAYED M A. Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages[J]. Nano Energy, 2018, 49: 316-323
doi: 10.1016/j.nanoen.2018.04.039
ZHENG J Y, LYU Y H, QIAO M, WANG R L, ZHOU Y Y, LI H, CHEN C, LI Y F, ZHOU H J, JIANG S P, WANG S Y. Photoelectrochemical synthesis of ammonia on the aerophilic-hydrophilic heterostructure with 37.8% efficiency[J]. Chem., 2019, 5(3): 617-633
doi: 10.1016/j.chempr.2018.12.003
WANG H J, YU H J, WANG Z Q, LI Y H, XU Y, LI X, XUE H R, WANG L. Electrochemical fabrication of porous Au film on Ni foam for nitrogen reduction to ammonia[J]. Small, 2019, 15(6): 1804769
doi: 10.1002/smll.201804769
ZHANG J C, ZHAO B, LIANG W K, ZHOU G S, LIANG Z Q, WANG Y W, QU J Y, SUN Y H, JIANG L. Three-phase electrolysis by gold nanoparticle on hydrophobic interface for enhanced electrochemical nitrogen reduction reaction[J]. Adv. Sci., 2020, 7(22): 2002630
doi: 10.1002/advs.202002630
HE H M, ZHU Q Q, YAN Y, ZHANG H W, HAN Z Y, SUN H M, CHEN J, LI C P, ZHANG Z H, DU M. Metal-organic framework supported Au nanoparticles with organosilicone coating for high-efficiency electrocatalytic N2 reduction to NH3[J]. Appl. Catal. B‒Environ., 2022, 302: 120840
doi: 10.1016/j.apcatb.2021.120840
ZHAO L, ZHOU J Z, ZHANG L W, SUN X, SUN X J, YAN T, REN X, WEI Q. Anchoring Au(111) on a bismuth sulfide nanorod: Boosting the artificial electrocatalytic nitrogen reduction reaction under ambient conditions[J]. ACS Appl. Mater. Interfaces, 2020, 12(50): 55838-55843
doi: 10.1021/acsami.0c15987
LIU D, ZHANG G, JI Q H, ZHANG Y Y, LI J H. Synergistic electrocatalytic nitrogen reduction enabled by confinement of nanosized Au particles onto a two-dimensional Ti3C2 substrate[J]. ACS Appl. Mater. Interfaces, 2019, 11(29): 25758-25765
doi: 10.1021/acsami.9b02511
YAO J X, ZHOU Y T, YAN J M, JIANG Q. Regulating Fe2(MoO4)3 by Au nanoparticles for efficient N2 electroreduction under ambient conditions[J]. Adv. Energy Mater., 2021, 11(14): 2003701
doi: 10.1002/aenm.202003701
HUI L, XUE Y R, YU H D, LIU Y X, FANG Y, XING C Y, HUANG B L, LI Y L. Highly efficient and selective generation of ammonia and hydrogen on a graphdiyne-based catalyst[J]. J. Am. Chem. Soc., 2019, 141(27): 10677-10683
doi: 10.1021/jacs.9b03004
GARRIDO-BARROS P, DEROSA J, CHALKLEY M J, PETERS J C. Tandem electrocatalytic N2 fixation via proton-coupled electron transfer[J]. Nature, 2022, 609(7925): 71-76
doi: 10.1038/s41586-022-05011-6
WANG H L, YANG D D, LIU S L, YIN S L, YU H J, XU Y, LI X N, WANG Z Q, WANG L. Amorphous sulfur decorated gold nanowires as efficient electrocatalysts toward ambient ammonia synthesis[J]. ACS. Sustain. Chem. Eng., 2019, 7(24): 19969-19974
doi: 10.1021/acssuschemeng.9b05542
WANG Z Q, LI Y H, YU H J, XU Y, XUE H R, LI X N, WANG H J, WANG L. Ambient electrochemical synthesis of ammonia from nitrogen and water catalyzed by flower-like gold microstructures[J]. ChemSusChem. 2018, 11(19): 3480-3485
doi: 10.1002/cssc.201801444
WANG H, WANG L, WANG Q, YE S Y, SUN W, SHAO Y, JIANG Z P, QIAO Q, ZHU Y M, SONG P F, LI D B, HE L, ZHANG X H, YUAN J Y, WU T, OZIN G A. Ambient electrosynthesis of ammonia: Electrode porosity and composition engineering[J]. Angew. Chem. ‒Int. Edit., 2018, 57(38): 12360-12364
doi: 10.1002/anie.201805514
ZHENG J Y, LYU Y H, QIAO M, VEDER J P, MARCO R D, BRADLEY J, WANG R L, LI Y F, HUANG A B, JIANG S P, WANG S Y. Tuning the electron localization of gold enables the control of nitrogen-to-ammonia fixation[J]. Angew. Chem. ‒Int. Edit., 2019, 58(51): 18604-18609
doi: 10.1002/anie.201909477
LI G, LI Y, LIU H, GUO Y, LI Y, ZHU D. Architecture of graphdiyne nanoscale films[J]. Chem. Commun., 2010, 46(19): 3256-3258
doi: 10.1039/b922733d
LU T T, WANG H. Graphdiyne-supported metal electrocatalysts: From nanoparticles and cluster to single atoms[J]. Nano Res., 2022, 15(11): 9764-9778
doi: 10.1007/s12274-022-4157-1
YU H D, XUE Y R, HUI L, ZHANG C, FANG Y, LIU Y X, CHEN X, ZHANG D Y, HUANG B L, LI Y. Graphdiyne-based metal atomic catalysts for synthesizing ammonia[J]. Natl. Sci. Rev., 2021, 8(8): nwaa213
doi: 10.1093/nsr/nwaa213
FANG Y, XUE Y R, HUI L, YU H D, LI Y L. Graphdiyne@janus magnetite for photocatalytic nitrogen fixation[J]. Angew. Chem. ‒Int. Edit., 2021, 60(6): 3170-3174
doi: 10.1002/anie.202012357
QI L, GAO Y Q, GAO Y, ZHENG Z Q, LUAN X Y, ZHAO S Y, CHEN Z Y, LIU H M, XUE Y R, LI Y L. Controlled growth of metal atom arrays on graphdiyne for seawater oxidation[J]. J. Am. Chem. Soc., 2024, 146(8): 5669-5677
doi: 10.1021/jacs.3c14742
YANG L L, WANG H J, WANG J, LI Y, ZHANG W, LU T B. A graphdiyne-based carbon material for electroless deposition and stabilization of sub-nanometric Pd catalysts with extremely high catalytic activity[J]. J. Mater. Chem. A, 2019, 7(21): 13142-13148
doi: 10.1039/C9TA03621K
LI M, WANG H J, ZHANG C, CHANG Y B, LI S J, ZHANG W, LU T B. Enhancing the photoelectrocatalytic performance of metal-free graphdiyne-based catalyst[J]. Sci. China‒Chem., 2020, 63(8): 1040-1045
doi: 10.1007/s11426-020-9763-9
LIU C, ZHANG C, LU T B. Graphdiyne anchored ultrafine Ag nanoparticles for highly efficient and solvent-free catalysis of CO2 cycloaddition[J]. Mater. Chem. Front., 2021, 5(16): 6052-6060
doi: 10.1039/D1QM00672J
SCARABELLI L, SÁNCHEZ-IGLESIAS A, PÉREZ-JUSTE J, LIZ-MARZÁN L M. A "tips and tricks" practical guide to the synthesis of gold nanorods[J]. J. Phys. Chem. Lett., 2015, 6(21): 4270-4279
doi: 10.1021/acs.jpclett.5b02123
Xue Xin , Qiming Qu , Islam E. Khalil , Yuting Huang , Mo Wei , Jie Chen , Weina Zhang , Fengwei Huo , Wenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
Sajid Mahmood , Haiyan Wang , Fang Chen , Yijun Zhong , Yong Hu . Recent progress and prospects of electrolytes for electrocatalytic nitrogen reduction toward ammonia. Chinese Chemical Letters, 2024, 35(4): 108550-. doi: 10.1016/j.cclet.2023.108550
Yihu Ke , Shuai Wang , Fei Jin , Guangbo Liu , Zhiliang Jin , Noritatsu Tsubaki . Charge transfer optimization: Role of Cu-graphdiyne/NiCoMoO4 S-scheme heterojunction and Ohmic junction. Chinese Journal of Structural Chemistry, 2024, 43(12): 100458-100458. doi: 10.1016/j.cjsc.2024.100458
Lu Qi , Zhaoyang Chen , Xiaoyu Luan , Zhiqiang Zheng , Yurui Xue , Yuliang Li . Atomically dispersed Mn enhanced catalytic performance for overall water splitting on graphdiyne-coated copper hydroxide nanowire. Chinese Journal of Structural Chemistry, 2024, 43(1): 100197-100197. doi: 10.1016/j.cjsc.2023.100197
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049
Fei Jin , Bolin Yang , Xuanpu Wang , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Chaozheng He , Jia Wang , Ling Fu , Wei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
Qiang Cao , Xue-Feng Cheng , Jia Wang , Chang Zhou , Liu-Jun Yang , Guan Wang , Dong-Yun Chen , Jing-Hui He , Jian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759
Yuxiang Zhang , Jia Zhao , Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415
Ying Chen , Xingyuan Xia , Lei Tian , Mengying Yin , Ling-Ling Zheng , Qian Fu , Daishe Wu , Jian-Ping Zou . Constructing built-in electric field via CuO/NiO heterojunction for electrocatalytic reduction of nitrate at low concentrations to ammonia. Chinese Chemical Letters, 2024, 35(12): 109789-. doi: 10.1016/j.cclet.2024.109789
Ting Xie , Xun He , Lang He , Kai Dong , Yongchao Yao , Zhengwei Cai , Xuwei Liu , Xiaoya Fan , Tengyue Li , Dongdong Zheng , Shengjun Sun , Luming Li , Wei Chu , Asmaa Farouk , Mohamed S. Hamdy , Chenggang Xu , Qingquan Kong , Xuping Sun . CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis. Chinese Chemical Letters, 2024, 35(11): 110005-. doi: 10.1016/j.cclet.2024.110005
Xiangyu Chen , Aihao Xu , Dong Wei , Fang Huang , Junjie Ma , Huibing He , Jing Xu . Atomic cerium-doped CuOx catalysts for efficient electrocatalytic CO2 reduction to CH4. Chinese Chemical Letters, 2025, 36(1): 110175-. doi: 10.1016/j.cclet.2024.110175
Yan Wang , Jiaqi Zhang , Xiaofeng Wu , Sibo Wang , Masakazu Anpo , Yuanxing Fang . Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts. Chinese Chemical Letters, 2025, 36(2): 110439-. doi: 10.1016/j.cclet.2024.110439
Sanmei Wang , Yong Zhou , Hengxin Fang , Chunyang Nie , Chang Q Sun , Biao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476
Zhenfei Tang , Yunwu Zhang , Zhiyuan Yang , Haifeng Yuan , Tong Wu , Yue Li , Guixiang Zhang , Xingzhi Wang , Bin Chang , Dehui Sun , Hong Liu , Lili Zhao , Weijia Zhou . Iron-doping regulated light absorption and active sites in LiTaO3 single crystal for photocatalytic nitrogen reduction. Chinese Chemical Letters, 2025, 36(3): 110107-. doi: 10.1016/j.cclet.2024.110107
Jin Long , Xingqun Zheng , Bin Wang , Chenzhong Wu , Qingmei Wang , Lishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354
Maomao Liu , Guizeng Liang , Ningce Zhang , Tao Li , Lipeng Diao , Ping Lu , Xiaoliang Zhao , Daohao Li , Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359