Citation: Chang LIU, Chao ZHANG, Tongbu LU. Small-size Au nanoparticles anchored on pyrenyl-graphdiyne for N2 electroreduction[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(1): 174-182. doi: 10.11862/CJIC.20240305 shu

Small-size Au nanoparticles anchored on pyrenyl-graphdiyne for N2 electroreduction

  • Corresponding author: Tongbu LU, lutongbu@tjut.edu.cn
  • Received Date: 14 August 2024
    Revised Date: 17 November 2024

Figures(4)

  • A gold catalyst of Au/ pyrenyl-graphdiyne (Pyr-GDY) was prepared by anchoring small size of gold nanoparticles (Au NPs) on the surface of Pyr-GDY for electrocatalytic nitrogen reduction reaction (eNRR), in which Au NPs with a size of approximately 3.69 nm was evenly distributed on spongy-like porous Pyr-GDY. The catalyst exhibited a good electrocatalytic activity for N2 reduction in a nitrogen-saturated electrolyte, with an ammonia yield of 32.1 μg·h-1·mgcat-1 at -0.3 V (vs RHE), 3.5 times higher than that of Au/C (Au NPs anchored on carbon black). In addition, Au/Pyr-GDY showed a Faraday efficiency (FE) of 26.9% for eNRR, and a good catalysis durability for over 22 h.
  • 加载中
    1. [1]

      BROWN K A, HARRIS D F, WILKER M B, RASMUSSEN A, KHADKA N, HAMBY H, KEABLE S, DUKOVIC G, PETERS J W, SEEFELDT L C, KING P W. Light-driven dinitrogen reduction catalyzed by a CdS: Nitrogenase MoFe protein biohybrid[J]. Science, 2016, 352(6284): 448-450  doi: 10.1126/science.aaf2091

    2. [2]

      CHEN J G, CROOKS R M, SEEFELDT L C, BREN K L, BULLOCK R M, DARENSBOURG M Y, HOLLAND P L, HOFFMAN B, JANIK M J, JONES A K, KANATZIDIS M G, KING P, LANCASTER K M, LYMAR S V, PFROMM P, SCHNEIDER W F, SCHROCK R R. Beyond fossil fuel-driven nitrogen transformations[J]. Science, 2018, 360(6391): eaar6611  doi: 10.1126/science.aar6611

    3. [3]

      ROSCA V, DUCA M, DE GROOT M T, KOPER M T M. Nitrogen cycle electrocatalysis[J]. Chem. Rev., 2009, 109(6): 2209-2244  doi: 10.1021/cr8003696

    4. [4]

      ASHIDA Y, ARASHIBA K, NAKAJIMA K, NISHIBAYASHI Y. Molybdenum-catalysed ammonia production with samarium diiodide and alcohols or water[J]. Nature, 2019, 568(7753): 536-540  doi: 10.1038/s41586-019-1134-2

    5. [5]

      VAN KESSEL M A H J, SPETH D R, ALBERTSEN M, NIELSEN P H, OP DEN CAMP H J M, KARTAL B, JETTEN M S M, LUCKER S. Complete nitrification by a single microorganism[J]. Nature, 2015, 528(7583): 555-559  doi: 10.1038/nature16459

    6. [6]

      TALUKDAR B, KUO T C, SNEED B Y, LYU L M, LIN H M, CHUANG Y C, CHENG M J, KUO C H. Enhancement of NH3 production in electrochemical N2 reduction by the Cu-rich inner surfaces of beveled CuAu nanoboxes[J]. ACS Appl. Mater. Interfaces, 2021, 13(44): 51839-51848  doi: 10.1021/acsami.1c03454

    7. [7]

      VAN DAMME M, CLARISSE L, WHITBURN A, HADJI-LAZARO J, HURTMANS D, CLERBAUX C, COHEUR P F. Industrial and agricultural ammonia point sources exposed[J]. Nature, 2018, 564(7734): 99-103  doi: 10.1038/s41586-018-0747-1

    8. [8]

      LÉGARÉ M A, BÉLANGER-CHABOT G, DEWHURST R D, WELZ E, KRUM-MENACHER I, ENGELS B, BRAUNSCHWEIG H. Nitrogen fixation and reduction at boron[J]. Science, 2018, 359(6378): 896-900  doi: 10.1126/science.aaq1684

    9. [9]

      ZHANG H R, WANG H J, CAO X Q, CHEN M D, LIU Y L, ZHOU Y T, HUANG M, XIA L, WANG Y, LI T D, ZHENG D D, LUO Y S, SUN S J, ZHAO X, SUN X P. Unveiling cutting-edge developments in electrocatalytic nitrate-to-ammonia conversion[J]. Adv. Mater., 2024, 36(16): 2312746  doi: 10.1002/adma.202312746

    10. [10]

      HUANG Z L, RAFIQ M, WOLDU A R, TONG Q X, ASTRUC D, HU L S. Recent progress in electrocatalytic nitrogen reduction to ammonia (NRR)[J]. Coord. Chem. Rev., 2023, 478: 214981  doi: 10.1016/j.ccr.2022.214981

    11. [11]

      MICHALSKY R, AVRAM A M, PETERSON B A, PFROMM P H, PETERSON A A. Chemical looping of metal nitride catalysts: Low-pressure ammonia synthesis for energy storage[J]. Chem. Sci., 2015, 6(7): 3965-3974  doi: 10.1039/C5SC00789E

    12. [12]

      FOSTER S L, BAKOVIC S I P, DUDA R D, MAHESHWARI S, MILTON R D, MINTEER S D, JANIK M J, RENNER J N, GREENLEE L F. Catalysts for nitrogen reduction to ammonia[J]. Nat. Catal., 2018, 1(7): 490-500  doi: 10.1038/s41929-018-0092-7

    13. [13]

      MARTÍN A J, SHINAGAWA T, PÉREZ-RAMÍREZ J. Electrocatalytic reduction of nitrogen: From haber-bosch to ammonia artificial leaf[J]. Chem, 2019, 5(2): 263-283  doi: 10.1016/j.chempr.2018.10.010

    14. [14]

      IULIANELLI A, LIGUORI S, WILCOX J, BASILE A. Advances on methane steam reforming to produce hydrogen through membrane reactors technology: A review[J]. Catal. Rev., 2016, 58(1): 1-35  doi: 10.1080/01614940.2015.1099882

    15. [15]

      CHOI C, BACK S, KIM N Y, LIM J, KIM Y H, JUNG Y. Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: A computational guideline[J]. ACS Catal., 2018, 8(8): 7517-7525  doi: 10.1021/acscatal.8b00905

    16. [16]

      DONG K, YAO Y C, LI H B, LI H J W, SUN S J, HE X, WANG Y, LUO Y S, ZHENG D D, LIU Q, LI Q, MA D W, SUN X P, TANG B. H2O2-mediated electrosynthesis of nitrate from air[J]. Nat. Synthesis, 2024, 3: 763-773  doi: 10.1038/s44160-024-00522-8

    17. [17]

      LI S X, LIANG J, WEI P P, LIU Q, XIE L S, LUO Y L, SUN X P. ITO@TiO2 nanoarray: An efficient and robust nitrite reduction reaction electrocatalyst toward NH3 production under ambient conditions[J]. eScience, 2022, 2(4): 382-388  doi: 10.1016/j.esci.2022.04.008

    18. [18]

      HAN J R, LIU Z C, MA Y J, CUI G W, XIE F Y, WANG F X, WU Y P, GAO S Y, XU Y H, SUN X P. Ambient N2 fixation to NH3 at ambient conditions: Using Nb2O5 nanofiber as a high-performance electrocatalyst[J]. Nano Energy, 2018, 52: 264-270  doi: 10.1016/j.nanoen.2018.07.045

    19. [19]

      LU Y H, YANG Y, ZHANG T F, GE Z, CHANG H C, XIAO P S, XIE Y Y, HUA L, LI Q Y, LI H Y, MA B, GUAN N J, MA Y F, CHEN Y S. Photoprompted hot electrons from bulk cross-linked graphene materials and their efficient catalysis for atmospheric ammonia synthesis[J]. ACS Nano, 2016, 10(11): 10507-10515  doi: 10.1021/acsnano.6b06472

    20. [20]

      SHIPMAN M A, SYMES M D. Recent progress towards the electrosynthesis of ammonia from sustainable resources[J]. Catal. Today, 2017, 268: 57-68

    21. [21]

      SHE Z W, KIBSGAARD J, DICKENS C F, CHORKENDORFF I, NORSKOV J K, JARAMILLO T F. Combining theory and experiment in electrocatalysis: Insights into materials design[J]. Science, 2017, 355(6321): eaad4998  doi: 10.1126/science.aad4998

    22. [22]

      PANG Y P, SU C, JIA G H, XU L Q, SHAO Z P. Emerging two- dimensional nanomaterials for electrochemical nitrogen reduction[J]. Chem. Soc. Rev., 2021, 50(22): 12744-12787  doi: 10.1039/D1CS00120E

    23. [23]

      ZHONG Y, XIONG H L, LOW J X, LONG R, XIONG Y J. Recent progress in electrochemical C—N coupling reactions[J]. eScience, 2023, 3(1): 100086  doi: 10.1016/j.esci.2022.11.002

    24. [24]

      LI Z, ATTANAYAKE N H, BLACKBURN J L, MILLER E M. Carbon dioxide and nitrogen reduction reactions using 2D transition metal dichalcogenide (TMDC) and carbide/nitride (MXene) catalysts[J]. Energy Environ. Sci., 2021, 14(12): 6242-6286  doi: 10.1039/D1EE03211A

    25. [25]

      JIANG Y, FU H, LIANG Z, ZHANG Q, DU Y P. Rare earth oxide based electrocatalysts: Synthesis, properties and applications[J]. Chem. Soc. Rev., 2024, 53(2): 714-763  doi: 10.1039/D3CS00708A

    26. [26]

      TIAN D, DENNY S R, LI K, WANG H, KATTEL S, CHEN J G. Density functional theory studies of transition metal carbides and nitrides as electrocatalysts[J]. Chem. Soc. Rev., 2021, 50(22): 12338-12376  doi: 10.1039/D1CS00590A

    27. [27]

      OUYANG L, LIANG J, LUO Y S, ZHENG D D, SUN S J, LIU Q, HAMDY M S, SUN X P, YING B W. Recent advances in electrocatalytic ammonia synthesis[J]. Chin. J. Catal., 2023, 50: 6-44  doi: 10.1016/S1872-2067(23)64464-X

    28. [28]

      MUSHTAQ M A, KUMAR A, LIU W, JI Q Q, DENG Y G, YASIN G, SAAD A, RAZA W, ZHAO J, AJMAL S, WU Y Y, AHMAD M, LASHARI N U R, WANG Y, LI T S, SUN S J, ZHENG D D, LUO Y S, CAI X K, SUN X P. A metal coordination number determined catalytic performance in manganese borides for ambient electrolysis of nitrogen to ammonia[J]. Adv. Mater., 2024, 36(21): 2313086  doi: 10.1002/adma.202313086

    29. [29]

      TAO H C, CHOI C, DING L X, JIANG Z, HAN Z, JIA M W, FAN Q, GAO Y N, WANG H H, ROBERTSON A W, HONG S, JUNG Y S, LIU S Z, SUN Z Y. Nitrogen fixation by Ru single-atom electrocatalytic reduction[J]. Chem, 2019, 5(1): 204-214  doi: 10.1016/j.chempr.2018.10.007

    30. [30]

      WANG H J, LI Y H, LI C J, DENG K, WANG Z Q, XU Y, LI X N, XUE H R, WANG L. One-pot synthesis of bi-metallic PdRu tripods as an efficient catalyst for electrocatalytic nitrogen reduction to ammonia[J]. J. Mater. Chem. A, 2019, 7(2): 801-805  doi: 10.1039/C8TA09482A

    31. [31]

      WANG X J, LUO M, LAN J, PENG M, TAN Y W. Nanoporous intermetallic Pd3Bi for efficient electrochemical nitrogen reduction[J]. Adv. Mater., 2021, 33(18): 2007733  doi: 10.1002/adma.202007733

    32. [32]

      LIU H M, HAN S H, ZHAO Y, ZHU Y Y, TIAN X L, ZENG J H, JIANG J X, XIA B Y, CHEN Y. Surfactant-free atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction[J]. J. Mater. Chem. A, 2018, 6(7): 3211-3217  doi: 10.1039/C7TA10866D

    33. [33]

      LI S J, BAO D, SHI M M, WULAN B R, YAN J M, JIANG Q. Amorphizing of Au nanoparticles by CeOx-RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions[J]. Adv. Mater., 2017, 29(33): 1700001  doi: 10.1002/adma.201700001

    34. [34]

      BAO D, ZHANG Q, MENG F L, ZHONG H X, SHI M M, ZHANG Y, YAN J M, JIANG Q, ZHANG X B. Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle[J]. Adv. Mater., 2017, 29(3): 1604799  doi: 10.1002/adma.201604799

    35. [35]

      NAZEMI M, PANIKKANVALAPPIL S R, EL-SAYED M A. Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages[J]. Nano Energy, 2018, 49: 316-323  doi: 10.1016/j.nanoen.2018.04.039

    36. [36]

      ZHENG J Y, LYU Y H, QIAO M, WANG R L, ZHOU Y Y, LI H, CHEN C, LI Y F, ZHOU H J, JIANG S P, WANG S Y. Photoelectrochemical synthesis of ammonia on the aerophilic-hydrophilic heterostructure with 37.8% efficiency[J]. Chem., 2019, 5(3): 617-633  doi: 10.1016/j.chempr.2018.12.003

    37. [37]

      WANG H J, YU H J, WANG Z Q, LI Y H, XU Y, LI X, XUE H R, WANG L. Electrochemical fabrication of porous Au film on Ni foam for nitrogen reduction to ammonia[J]. Small, 2019, 15(6): 1804769  doi: 10.1002/smll.201804769

    38. [38]

      ZHANG J C, ZHAO B, LIANG W K, ZHOU G S, LIANG Z Q, WANG Y W, QU J Y, SUN Y H, JIANG L. Three-phase electrolysis by gold nanoparticle on hydrophobic interface for enhanced electrochemical nitrogen reduction reaction[J]. Adv. Sci., 2020, 7(22): 2002630  doi: 10.1002/advs.202002630

    39. [39]

      HE H M, ZHU Q Q, YAN Y, ZHANG H W, HAN Z Y, SUN H M, CHEN J, LI C P, ZHANG Z H, DU M. Metal-organic framework supported Au nanoparticles with organosilicone coating for high-efficiency electrocatalytic N2 reduction to NH3[J]. Appl. Catal. B‒Environ., 2022, 302: 120840  doi: 10.1016/j.apcatb.2021.120840

    40. [40]

      ZHAO L, ZHOU J Z, ZHANG L W, SUN X, SUN X J, YAN T, REN X, WEI Q. Anchoring Au(111) on a bismuth sulfide nanorod: Boosting the artificial electrocatalytic nitrogen reduction reaction under ambient conditions[J]. ACS Appl. Mater. Interfaces, 2020, 12(50): 55838-55843  doi: 10.1021/acsami.0c15987

    41. [41]

      LIU D, ZHANG G, JI Q H, ZHANG Y Y, LI J H. Synergistic electrocatalytic nitrogen reduction enabled by confinement of nanosized Au particles onto a two-dimensional Ti3C2 substrate[J]. ACS Appl. Mater. Interfaces, 2019, 11(29): 25758-25765  doi: 10.1021/acsami.9b02511

    42. [42]

      YAO J X, ZHOU Y T, YAN J M, JIANG Q. Regulating Fe2(MoO4)3 by Au nanoparticles for efficient N2 electroreduction under ambient conditions[J]. Adv. Energy Mater., 2021, 11(14): 2003701  doi: 10.1002/aenm.202003701

    43. [43]

      HUI L, XUE Y R, YU H D, LIU Y X, FANG Y, XING C Y, HUANG B L, LI Y L. Highly efficient and selective generation of ammonia and hydrogen on a graphdiyne-based catalyst[J]. J. Am. Chem. Soc., 2019, 141(27): 10677-10683  doi: 10.1021/jacs.9b03004

    44. [44]

      GARRIDO-BARROS P, DEROSA J, CHALKLEY M J, PETERS J C. Tandem electrocatalytic N2 fixation via proton-coupled electron transfer[J]. Nature, 2022, 609(7925): 71-76  doi: 10.1038/s41586-022-05011-6

    45. [45]

      WANG H L, YANG D D, LIU S L, YIN S L, YU H J, XU Y, LI X N, WANG Z Q, WANG L. Amorphous sulfur decorated gold nanowires as efficient electrocatalysts toward ambient ammonia synthesis[J]. ACS. Sustain. Chem. Eng., 2019, 7(24): 19969-19974  doi: 10.1021/acssuschemeng.9b05542

    46. [46]

      WANG Z Q, LI Y H, YU H J, XU Y, XUE H R, LI X N, WANG H J, WANG L. Ambient electrochemical synthesis of ammonia from nitrogen and water catalyzed by flower-like gold microstructures[J]. ChemSusChem. 2018, 11(19): 3480-3485  doi: 10.1002/cssc.201801444

    47. [47]

      WANG H, WANG L, WANG Q, YE S Y, SUN W, SHAO Y, JIANG Z P, QIAO Q, ZHU Y M, SONG P F, LI D B, HE L, ZHANG X H, YUAN J Y, WU T, OZIN G A. Ambient electrosynthesis of ammonia: Electrode porosity and composition engineering[J]. Angew. Chem. ‒Int. Edit., 2018, 57(38): 12360-12364  doi: 10.1002/anie.201805514

    48. [48]

      ZHENG J Y, LYU Y H, QIAO M, VEDER J P, MARCO R D, BRADLEY J, WANG R L, LI Y F, HUANG A B, JIANG S P, WANG S Y. Tuning the electron localization of gold enables the control of nitrogen-to-ammonia fixation[J]. Angew. Chem. ‒Int. Edit., 2019, 58(51): 18604-18609  doi: 10.1002/anie.201909477

    49. [49]

      LI G, LI Y, LIU H, GUO Y, LI Y, ZHU D. Architecture of graphdiyne nanoscale films[J]. Chem. Commun., 2010, 46(19): 3256-3258  doi: 10.1039/b922733d

    50. [50]

      LU T T, WANG H. Graphdiyne-supported metal electrocatalysts: From nanoparticles and cluster to single atoms[J]. Nano Res., 2022, 15(11): 9764-9778  doi: 10.1007/s12274-022-4157-1

    51. [51]

      YU H D, XUE Y R, HUI L, ZHANG C, FANG Y, LIU Y X, CHEN X, ZHANG D Y, HUANG B L, LI Y. Graphdiyne-based metal atomic catalysts for synthesizing ammonia[J]. Natl. Sci. Rev., 2021, 8(8): nwaa213  doi: 10.1093/nsr/nwaa213

    52. [52]

      FANG Y, XUE Y R, HUI L, YU H D, LI Y L. Graphdiyne@janus magnetite for photocatalytic nitrogen fixation[J]. Angew. Chem. ‒Int. Edit., 2021, 60(6): 3170-3174  doi: 10.1002/anie.202012357

    53. [53]

      QI L, GAO Y Q, GAO Y, ZHENG Z Q, LUAN X Y, ZHAO S Y, CHEN Z Y, LIU H M, XUE Y R, LI Y L. Controlled growth of metal atom arrays on graphdiyne for seawater oxidation[J]. J. Am. Chem. Soc., 2024, 146(8): 5669-5677  doi: 10.1021/jacs.3c14742

    54. [54]

      YANG L L, WANG H J, WANG J, LI Y, ZHANG W, LU T B. A graphdiyne-based carbon material for electroless deposition and stabilization of sub-nanometric Pd catalysts with extremely high catalytic activity[J]. J. Mater. Chem. A, 2019, 7(21): 13142-13148  doi: 10.1039/C9TA03621K

    55. [55]

      LI M, WANG H J, ZHANG C, CHANG Y B, LI S J, ZHANG W, LU T B. Enhancing the photoelectrocatalytic performance of metal-free graphdiyne-based catalyst[J]. Sci. China‒Chem., 2020, 63(8): 1040-1045  doi: 10.1007/s11426-020-9763-9

    56. [56]

      LIU C, ZHANG C, LU T B. Graphdiyne anchored ultrafine Ag nanoparticles for highly efficient and solvent-free catalysis of CO2 cycloaddition[J]. Mater. Chem. Front., 2021, 5(16): 6052-6060  doi: 10.1039/D1QM00672J

    57. [57]

      SCARABELLI L, SÁNCHEZ-IGLESIAS A, PÉREZ-JUSTE J, LIZ-MARZÁN L M. A "tips and tricks" practical guide to the synthesis of gold nanorods[J]. J. Phys. Chem. Lett., 2015, 6(21): 4270-4279  doi: 10.1021/acs.jpclett.5b02123

  • 加载中
    1. [1]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    2. [2]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    3. [3]

      Sajid MahmoodHaiyan WangFang ChenYijun ZhongYong Hu . Recent progress and prospects of electrolytes for electrocatalytic nitrogen reduction toward ammonia. Chinese Chemical Letters, 2024, 35(4): 108550-. doi: 10.1016/j.cclet.2023.108550

    4. [4]

      Yihu Ke Shuai Wang Fei Jin Guangbo Liu Zhiliang Jin Noritatsu Tsubaki . Charge transfer optimization: Role of Cu-graphdiyne/NiCoMoO4 S-scheme heterojunction and Ohmic junction. Chinese Journal of Structural Chemistry, 2024, 43(12): 100458-100458. doi: 10.1016/j.cjsc.2024.100458

    5. [5]

      Lu Qi Zhaoyang Chen Xiaoyu Luan Zhiqiang Zheng Yurui Xue Yuliang Li . Atomically dispersed Mn enhanced catalytic performance for overall water splitting on graphdiyne-coated copper hydroxide nanowire. Chinese Journal of Structural Chemistry, 2024, 43(1): 100197-100197. doi: 10.1016/j.cjsc.2023.100197

    6. [6]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    7. [7]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    8. [8]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    9. [9]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    10. [10]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    11. [11]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    12. [12]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    13. [13]

      Ying ChenXingyuan XiaLei TianMengying YinLing-Ling ZhengQian FuDaishe WuJian-Ping Zou . Constructing built-in electric field via CuO/NiO heterojunction for electrocatalytic reduction of nitrate at low concentrations to ammonia. Chinese Chemical Letters, 2024, 35(12): 109789-. doi: 10.1016/j.cclet.2024.109789

    14. [14]

      Ting XieXun HeLang HeKai DongYongchao YaoZhengwei CaiXuwei LiuXiaoya FanTengyue LiDongdong ZhengShengjun SunLuming LiWei ChuAsmaa FaroukMohamed S. HamdyChenggang XuQingquan KongXuping Sun . CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis. Chinese Chemical Letters, 2024, 35(11): 110005-. doi: 10.1016/j.cclet.2024.110005

    15. [15]

      Xiangyu ChenAihao XuDong WeiFang HuangJunjie MaHuibing HeJing Xu . Atomic cerium-doped CuOx catalysts for efficient electrocatalytic CO2 reduction to CH4. Chinese Chemical Letters, 2025, 36(1): 110175-. doi: 10.1016/j.cclet.2024.110175

    16. [16]

      Yan WangJiaqi ZhangXiaofeng WuSibo WangMasakazu AnpoYuanxing Fang . Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts. Chinese Chemical Letters, 2025, 36(2): 110439-. doi: 10.1016/j.cclet.2024.110439

    17. [17]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    18. [18]

      Zhenfei TangYunwu ZhangZhiyuan YangHaifeng YuanTong WuYue LiGuixiang ZhangXingzhi WangBin ChangDehui SunHong LiuLili ZhaoWeijia Zhou . Iron-doping regulated light absorption and active sites in LiTaO3 single crystal for photocatalytic nitrogen reduction. Chinese Chemical Letters, 2025, 36(3): 110107-. doi: 10.1016/j.cclet.2024.110107

    19. [19]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    20. [20]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

Metrics
  • PDF Downloads(1)
  • Abstract views(294)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return