Citation: Xuehua SUN, Min MA, Jianting LIU, Rui TIAN, Hongmei CHAI, Huali CUI, Loujun GAO. Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294 shu

Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine

  • Corresponding author: Xuehua SUN, happyxh908080@163.com
  • Received Date: 5 August 2024
    Revised Date: 20 November 2024

Figures(9)

  • We used the natural product chamomile as a carbon source to synthesize praseodymium(Pr) and nitrogen (N) co-doped biomass carbon dots (Pr/N-BCDs) with remarkable luminescence properties by one-step hydrothermal method. Compared with single N doped BCDs (N BCDs) and Prdoped BCDs (PrBCDs), Pr/N BCDs not only showed better fluorescence properties and stability but also achieved a significant increase in quantum yield of 12%. More importantly, under certain conditions, Pr/N-BCDs and 2, 4-dinitrophenylhydrazide (2, 4-DNPH) had significant fluorescence internal filtration effect (IFE) and dynamic quenching effect, and in the concentration range of 0.50-20 μmol·L-1, the concentration of 2, 4-DNPH had a good linear relationship with the fluorescence quenching signal, and the detection limit was as low as 2.1 nmol·L-1.
  • 加载中
    1. [1]

      MANIOUDAKIS J, VICTORIA F, THOMPOSN C A, BROWN L, MOVSUM M, LUCIFERO R, NACCACHE R. Effects of nitrogendoping on the photophysical properties of carbon dots[J]. J. Mater. Chem. C, 2019,7:853-862. doi: 10.1039/C8TC04821E

    2. [2]

      KOU X L, JIANG S C, PARK S J, MENG L Y. A review: Recent advances in preparations and applications of heteroatom-doped carbon quantum dots[J]. Dalton Trans., 2020,49:6915-6938. doi: 10.1039/D0DT01004A

    3. [3]

      LI F, YANG D Y, XU H P. Non-metal-heteroatom-doped carbon dots: Synthesis and properties[J]. Chem.-Eur. J., 2019,24:1165-1176.

    4. [4]

      ALAS M Ö, GENC R. Solvatochromic surface-passivated carbon dots for fluorometric moisture sensing in organic solvents[J]. ACS Appl. Nano Mater., 2021,4(8):7974-7987. doi: 10.1021/acsanm.1c01282

    5. [5]

      VENKATESWARULU M, KUMAR S, GHOSH S. Modified atomic orbital overlap: Molecular level proof of the nucleophilic cleavage propensity of dinitrophenol-based probes[J]. J. Org. Chem., 2017,82(9):4713-4720. doi: 10.1021/acs.joc.7b00317

    6. [6]

      JIANG G Y, LI Q Y, LV A Q, LIU L X, GONG J Y, MA H L, WANG J G, TANG B Z. Modulation of the intramolecular hydrogen bonding and push-pull electron effects toward realizing highly efficient organic room temperature phosphorescence[J]. J. Mater. Chem. C, 2022,10:13797-13804. doi: 10.1039/D2TC01093C

    7. [7]

      ZHANG X R, YAO S X, CHEN P S, WANG Y Q, LYU D D, YU F, QING M, TIAN Z Q, SHEN P K. Revealing the dependence of active site configuration of N doped and N, S-co-doped carbon nanospheres on six-membered heterocyclic precursors for oxygen reduction reaction[J]. J. Catal., 2020,389:677-689. doi: 10.1016/j.jcat.2020.07.003

    8. [8]

      CHENG W J, WAN C C, LI X G, CHAI H Y, YANG Z X, WEI S, SU J H, TANG X E, WU Y Q. Waste to wealth: Oxygen-nitrogen-sulfur codoped lignin-derived carbon microspheres from hazardous black liquors for high-performance DSSCs[J]. J. Energy Chem., 2023,83:549-563. doi: 10.1016/j.jechem.2023.04.032

    9. [9]

      WANG H Y, LU Q J, HOU Y X, LIU Y L, ZHANG Y Y. High fluorescence S, N co-doped carbon dots as an ultra-sensitive fluorescent probe for the determination of uric acid[J]. Talanta, 2016,155:62-69. doi: 10.1016/j.talanta.2016.04.020

    10. [10]

      WU Z F, ZHANG M, CAO S, WANG L, QIN Z J, ZHONG F R, DUAN H M. Flexible all-biomass gas sensor based on doped carbon quantum dots/nonwoven cotton with discriminative function[J]. Cellulose, 2020,29:5817-5832.

    11. [11]

      ZHOU J, ZHOU H, TANG J B, DENG S, YAN F, LI W J, QU M H. Carbon dots doped with heteroatoms for fluorescent bioimaging: A review[J]. Microchim. Acta, 2017,184:343-368. doi: 10.1007/s00604-016-2043-9

    12. [12]

      SU W, GUO R H, YUAN F L, LI Y C, LI X H, ZHANG Y, ZHOU S X, FAN L Z. Red-emissive carbon quantum dots for nuclear drug delivery in cancer stem cells[J]. J. Phys. Chem. Lett., 2020,11(4):1357-1363. doi: 10.1021/acs.jpclett.9b03891

    13. [13]

      ZHANG Z T, YI G Y, LI P, ZHANG X X, FAN H Y, ZHANG Y L, WANG X D, ZHANG C X. A minireview on doped carbon dots for photocatalytic and electrocatalytic applications[J]. Nanoscale, 2020,12:13899-13906. doi: 10.1039/D0NR03163A

    14. [14]

      NAJAFLU M, SHAHGOLZARI M, BANI F, KHOSROUSHAHI A Y. Green synthesis of near-infrared copper-doped carbon dots from alcea for cancer photothermal therapy[J]. ACS Omega, 2022,7(38):34573-34582. doi: 10.1021/acsomega.2c04484

    15. [15]

      XU Q, SU R G, CHEN Y S, SREENIVASAN S T, LI N, ZHENG X S, ZHU J F, PAN H B, LI W J, XU C M, XIA Z H, DAI L M. Metal charge transfer doped carbon dots with reversibly switchable, ultra-high quantum yield photoluminescence[J]. ACS Appl. Energy Mater., 2018,1(4):1886-1893.

    16. [16]

      HAN C Y, ZHANG X M, WANG F, YU Q H, CHEN F, SHEN D, YANG Z Y, WANG T T, JIANG M Y, DENG T, YU C. Duplex metal co-doped carbon quantum dots-based drug delivery system with intelligent adjustable size as adjuvant for synergistic cancer therapy[J]. Carbon, 2021,183:789-808. doi: 10.1016/j.carbon.2021.07.063

    17. [17]

      LI F, LIU C J, YANG J, WANG Z, LIU W G, TIAN F. Mg/N double doping strategy to fabricate extremely high luminescent carbon dots for bioimaging[J]. RSC Adv., 2014,4:3201-3205. doi: 10.1039/C3RA43826K

    18. [18]

      BOUMYA W, HAMMANI H, LOUDIKI A, ACHAK M, BAKASSE M, EI MHAMMEDI M A. Electrochemical impedance spectroscopic investigation in detecting 2, 4-dinitrophenylhydrazine using catalytic effect of copper at glassy electrode[J]. Electroanalysis, 2016,28(12):2965-2971. doi: 10.1002/elan.201600157

    19. [19]

      LI J X, JOELLE E N N, YANG Q, ZHENG F, LIU W Y, LIU J. Determination of residual phenylhydrazines in drug substances by high-performance liquid chromatography with pre-column derivatization[J]. Anal. Methods, 2019,11:6146-6152. doi: 10.1039/C9AY02231G

    20. [20]

      ALIPOUR S, HASSANI M, HOSSEINI S M H, MOUSAVI-KHOSHDEL S M. Facile preparation of covalently functionalized graphene with 2, 4-dinitrophenylhydrazine and investigation of its characteristics[J]. RSC Adv., 2023,13:558-569. doi: 10.1039/D2RA06343C

    21. [21]

      BASAVARAJAPPA K V, ARTHOBA NAYAKA Y, PURUSHOTHAMA H T, YATHISHA R O, VINAY M M, RUDRE-SHA B J, MANJUNATHA K B. Optical, electrochemical and current-voltage characteristics of novel coumarin based 2, 4-dinitrophenylhydrazone derivatives[J]. J. Mol. Struct., 2020,1199126946. doi: 10.1016/j.molstruc.2019.126946

    22. [22]

      GUO Z H, ZHOU L, CHEN X, SONG Q J. Carbon-coated copper nanocrystals with enhanced peroxidase-like activity for sensitive colorimetric determination of 2, 4-dinitrophenylhydrazine[J]. Microchim. Acta, 2024,19137. doi: 10.1007/s00604-023-06127-w

    23. [23]

      YAN X L, YU X X, PEI J Y, BI L H. First two-way electrochemical sensor for the detection of the pollutant 2, 4-dinitrophenylhydrazine and its metabolite based on Cu-containing tungstophosphate and graphene oxide[J]. Catalysts, 2023,13(4)769. doi: 10.3390/catal13040769

    24. [24]

      WANG Q Y, WANG X H, WU Y W. Highly sensitive and selective fluorescence probe for 2, 4-dinitrophenylhydrazine detection in wastewater using water-soluble CdTe QDs[J]. Photochem. Photobiol., 2019,95(3):895-900. doi: 10.1111/php.13084

    25. [25]

      CHEN F, ZHU L H, WANG H. Preparation of carbon dots and determination of their fluorescence quantum yield[J]. Univ. Chem., 2019,34(7):67-72.

    26. [26]

      WEI C J, LI J, XIAO X C, YUE T, ZHAO D. The one-step preparation of green-emission carbon dots based on the deactivator-reducing reagent synergistic effect and the study on their luminescence mechanism[J]. RSC Adv., 2018,8:20016-20024. doi: 10.1039/C8RA03353F

    27. [27]

      SATO K, YOKOSUKA S, TAKIGAMI Y, HIRAKURI K, FUJIOKA K, MANOME Y, SUKEGAWA H, IWAI H, FUKATA N. Size-tunable silicon/iron oxide hybrid nanoparticles with fluorescence, superparamagnetism, and biocompatibility[J]. J. Am. Chem. Soc., 2011,133(46):18626-18633. doi: 10.1021/ja202466m

    28. [28]

      MOHAMMED S J, OMER K M, HAWAAIZ F E. Deep insights to explain the mechanism of carbon dot formation at various reaction times using the hydrothermal technique: FT-IR, 13C-NMR, 1H-NMR, and UV-visible spectroscopic approaches[J]. RSC Adv., 2023,13:14340-14349. doi: 10.1039/D3RA01646C

    29. [29]

      DELNAVAZ E, AMJADI M, FARAJZADEH M A. Metal-organic framework with dual-loading of nickel/nitrogen-doped carbon dots and magnetic nanoparticles for fluorescence detection of fenitrothion in food samples[J]. J. Food Compos. Anal., 2023,115104873. doi: 10.1016/j.jfca.2022.104873

    30. [30]

      ABU-ZIED B M. Controlled synthesis of praseodymium oxide nanoparticles obtained by combustion route: Effect of calcination temperature and fuel to oxidizer ratio[J]. Appl. Surf. Sci., 2019,471:246-255. doi: 10.1016/j.apsusc.2018.12.007

    31. [31]

      ZOU S Q, GUO F, WU L, JU H X, SUN M Z, CAI R, XU L X, GONG Y H, GONG A H, ZHANG M M, DU F Y. One-pot synthesis of cerium and praseodymium co-doped carbon quantum dots as enhanced antioxidant for hydroxyl radical scavenging[J]. Nanotechnology, 2020,31165101. doi: 10.1088/1361-6528/ab5b40

    32. [32]

      CHOPPADANDI M, GUDURU A T, GONDALIYA P, ARYA N, KALIA K, KUMAR H, KAPUSETTI G. Structural features regulated photoluminescence intensity and cell internalization of carbon and graphene quantum dots for bioimaging[J]. Mater. Sci. Eng. C-Mater. Biol. Appl., 2021,129112366. doi: 10.1016/j.msec.2021.112366

    33. [33]

      CUI P, XUE Y. The role of center-N-doping in non-radiative recombination loss of nitrogen-doped graphene quantum dots[J]. Mater. Sci. Semicond. Proc., 2022,139106323. doi: 10.1016/j.mssp.2021.106323

    34. [34]

      ZU F L, YAN F Y, BAI Z J, XU J X, WANG Y Y, HUANG Y C, ZHOU X G. The quenching of the fluorescence of carbon dots: A review on mechanisms and applications[J]. Microchim. Acta, 2017,184:1899-1914. doi: 10.1007/s00604-017-2318-9

    35. [35]

      LIANG Z C, KANG M, PAYNE G F, WANG X H, SUN R C. Probing energy and electron transfer mechanisms in fluorescence quenching of biomass carbon quantum dots[J]. ACS Appl. Mater. Interfaces, 2016,8(27):17478-17488. doi: 10.1021/acsami.6b04826

    36. [36]

      CHEN J C, LIU J H, LI J Z, XU L Q, QIAO Y J. One-pot synthesis of nitrogen and sulfur co-doped carbon dots and its application for sensor and multicolor cellular imaging[J]. J. Colloid Interface Sci., 2017,485:167-174. doi: 10.1016/j.jcis.2016.09.040

    37. [37]

      SONG Y B, ZHU S J, XIANG S Y, ZHAO X H, ZHANG J H, ZHANG H, FU Y, YANG B. Investigation into the fluorescence quenching behaviors and applications of carbon dots[J]. Nanoscale, 2014,6:4676-4682. doi: 10.1039/c4nr00029c

    38. [38]

      JIAO X Y, MARIN L, CHENG X J. Fluorescent cellulose/testing paper for the sensitive and selective recognition of explosives 2, 4, 6-trinitrophenol and 2, 4-dinitrophenylhydrazine[J]. J. Photochem. Photobiol. A-Chem., 2022,424113632. doi: 10.1016/j.jphotochem.2021.113632

    39. [39]

      ADEOSUN W A, ASIRI A M, MARWANI H M. Real time detection and monitoring of 2, 4-dinitrophenylhydrazine in industrial effluents and water bodies by electrochemical approach based on novel conductive polymeric composite[J]. Ecotox. Environ. Safe., 2020,206111171. doi: 10.1016/j.ecoenv.2020.111171

    40. [40]

      ZHANG E S, JU P, ZHANG Z, YANG H, TANG L, HOU X Y, YOU J M, WANG J J. A novel multi-purpose Zn-MOF fluorescent sensor for 2, 4-dinitrophenylhydrazine, picric acid, La3+ and Ca2+: Synthesis, structure, selectivity, sensitivity and recyclability[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2019,222117207. doi: 10.1016/j.saa.2019.117207

    41. [41]

      MENG Z Y, YIN J, ZHAO F, LI M X, ZHANG Y, LIANG Y Y, WANG Z L, YANG Y Q. An efficient chitosan-based naphthalimide-modified fluorescent sensor for rapid detection of 2, 4-dinitrophenyl-hydrazine and its applications in environmental analysis[J]. Eur. Polym. J., 2021,158110705. doi: 10.1016/j.eurpolymj.2021.110705

  • 加载中
    1. [1]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    2. [2]

      Junmei FANWei LIURuitao ZHUChenxi QINXiaoling LEIHaotian WANGJiao WANGHongfei HAN . High sensitivity detection of baicalein by N, S co-doped carbon dots and their application in biofluids. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2009-2020. doi: 10.11862/CJIC.20240120

    3. [3]

      Xiaodan WangYingnan LiuZhibin LiuZhongjian LiTao ZhangYi ChengLecheng LeiBin YangYang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926

    4. [4]

      Peide ZhuYangjia LiuYaoyao TangSiqi ZhuXinyang LiuLei YinQuan LiuZhiqiang YuQuan XuDixian LuoJuncheng Wang . Bi-doped carbon quantum dots functionalized liposomes with fluorescence visualization imaging for tumor diagnosis and treatment. Chinese Chemical Letters, 2024, 35(4): 108689-. doi: 10.1016/j.cclet.2023.108689

    5. [5]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    6. [6]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    7. [7]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    8. [8]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    9. [9]

      Jiaojiao LiangYouming PengZhichao XuYufei WangMenglong LiuXin LiuDi HuangYuehua WeiZengxi Wei . Boron/phosphorus co-doped nitrogen-rich carbon nanofiber with flexible anode for robust sodium-ion battery. Chinese Chemical Letters, 2025, 36(1): 110452-. doi: 10.1016/j.cclet.2024.110452

    10. [10]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    11. [11]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    12. [12]

      Xilin BaiWei DengJingjuan WangMing Zhou . Enrichment-enhanced detection strategy in the optimized monitoring system of dopamine with carbon dots-based probe. Chinese Chemical Letters, 2025, 36(2): 109959-. doi: 10.1016/j.cclet.2024.109959

    13. [13]

      Xiujuan WangYijie WangLuyun CuiWenqiang GaoXiao LiHong LiuWeijia ZhouJingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031

    14. [14]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332

    15. [15]

      Rui ChengXin HuangTingting ZhangJiazhuang GuoJian YuSu Chen . Solid superacid catalysts promote high-performance carbon dots with narrow-band fluorescence emission for luminescence solar concentrators. Chinese Chemical Letters, 2024, 35(8): 109278-. doi: 10.1016/j.cclet.2023.109278

    16. [16]

      Xiangyu ChenAihao XuDong WeiFang HuangJunjie MaHuibing HeJing Xu . Atomic cerium-doped CuOx catalysts for efficient electrocatalytic CO2 reduction to CH4. Chinese Chemical Letters, 2025, 36(1): 110175-. doi: 10.1016/j.cclet.2024.110175

    17. [17]

      Binyang QinMengqi WangShimei WuYining LiChilin LiuYufei ZhangHaosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921

    18. [18]

      Qiang FuShouhong SunKangzhi LuNing LiZhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136

    19. [19]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    20. [20]

      Hangwen ZhengZiqian WangHuiJie ZhangJing LeiRihui LiJian YangHaiyan Wang . Synthesis and applications of B, N co-doped carbons for zinc-based energy storage devices. Chinese Chemical Letters, 2025, 36(3): 110245-. doi: 10.1016/j.cclet.2024.110245

Metrics
  • PDF Downloads(0)
  • Abstract views(121)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return