Citation: Zhaodong WANG. In situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268 shu

In situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold

  • Received Date: 15 July 2024
    Revised Date: 18 November 2024

Figures(6)

  • A trinuclear copper complex [Cu3(L2)2(SO4)2(H2O)7)]·8H2O (1) (HL2=1-hydroxy-3-(pyrazin-2-yl)-N- (pyrazin-2-ylmethyl)imidazo[1, 5-a]pyrazine-8-carboxamide) with a multi-substituted imidazo[1, 5-a]pyrazine scaffold was serendipitously prepared from the reaction of the pro-ligand of H2L1 (N, N′-bis(pyrazin-2-ylmethyl)pyrazine-2, 3-dicarboxamide) with CuSO4·5H2O in aqueous solution at room temperature. Complex 1 was characterized by IR, single-crystal X-ray analysis, and magnetic susceptibility measurements. Single-crystal X-ray analysis reveals that the complex consists of three Cu(Ⅱ) ions, two in situ transformed L2- ligands, two coordinated sulfates, seven coordinated water molecules, and eight uncoordinated water molecules. Magnetic susceptibility measurement indicates that there are obvious ferromagnetic coupling interactions between the adjacent Cu(Ⅱ) ions in 1.
  • 加载中
    1. [1]

      CHEN X M, TONG M L. Solvothermal in-situ metal/ligand reactions: A new bridge between coordination chemistry and organic synthetic chemistry[J]. Acc. Chem. Res., 2007, 40(2): 162-170  doi: 10.1021/ar068084p

    2. [2]

      ZHAO H, QU Z R, YE H Y, XIONG R G. In situ hydrothermal synthesis of tetrazole coordination polymers with interesting physical properties[J]. Chem. Soc. Rev., 2008, 37(1): 84-100  doi: 10.1039/B616738C

    3. [3]

      ZHANG X M. Hydro(solvo)thermal in situ ligand syntheses[J]. Coord. Chem. Rev., 2005, 249(11/12): 1201-1219

    4. [4]

      ZHU H B, GOU S H. In situ construction of metal-organic sulfur-containing heterocycle frameworks[J]. Coord. Chem. Rev., 2011, 255(1/2): 318-338

    5. [5]

      KONG X J, HE T, ZHANG Y Z, WU X Q, WANG S N, XU M M, SI G R, LI J R. Constructing new metal-organic frameworks with complicated ligands from "one-pot" in situ reactions[J]. Chem. Sci., 2019, 10(14): 3949-3955  doi: 10.1039/C9SC00178F

    6. [6]

      MONDAL M, GHOSH S, MAITY S, GIRI S, GHOSH A. In situ transformation of a tridentate to a tetradentate unsymmetric Schiff base ligand via deaminative coupling in Ni(Ⅱ) complexes: crystal structures, magnetic properties and catecholase activity study[J]. Inorg. Chem. Front., 2020, 7(1): 247-259  doi: 10.1039/C9QI00975B

    7. [7]

      ZHANG J P, CHEN X M. Crystal engineering of binary metal imidazolate and triazolate frameworks[J]. Chem. Commun., 2006(16): 1689-1699  doi: 10.1039/b516367f

    8. [8]

      LI G B, LIU J M, YUZ Q, WANG W, SU C Y. Assembly of a 1D coordination polymer through in situ formation of a new ligand by double C—C coupling on CHCl3 under solvothermal conditions[J]. Inorg. Chem., 2009, 48(18): 8659-8661  doi: 10.1021/ic9011263

    9. [9]

      LIU J L, CHEN Y C, LI Q W, GOMEZ C S, ARAVENA D, RUIZ E, LIN W Q, LENG J D, TONG M L. Two 3d-4f nanomagnets formed via a two-step in situ reaction of picolinaldehyde[J]. Chem. Commun., 2013, 49(58): 6549-6551  doi: 10.1039/c3cc43200a

    10. [10]

      SUN D, WEI Z H, YANG C F, WANG D F, ZHANG N, HUANG R B, ZHENG L S. pH-dependent Ag(Ⅰ) coordination architectures constructed from 4-cyanopyridine and phthalic acid: From discrete structure to 2D sheet[J]. CrystEngComm, 2011, 13(5): 1591-1601  doi: 10.1039/C0CE00539H

    11. [11]

      KANOO P, HALDAR R, CYRIAC S T, MAJI T K. Coordination driven axial chirality in a microporous solid assembled from an achiral linker via in situ C—N coupling[J]. Chem. Commun., 2011, 47(39): 11038-11040  doi: 10.1039/c1cc13877d

    12. [12]

      GUO X X, GU D W, WU Z, ZHANG W. Copper-catalyzed C—H functionalization reactions: Efficient synthesis of heterocycles[J]. Chem. Rev., 2015, 115(3): 1622-1651  doi: 10.1021/cr500410y

    13. [13]

      JIANG H, LIN A, ZHU C, CHENG Y. Copper-catalyzed C—N bond formation through C—H/N—H activation: A novel approach to the synthesis of multisubstituted ureas[J]. Chem. Commun., 2013, 49(8): 819-821  doi: 10.1039/C2CC36417D

    14. [14]

      RASHEED S, RAO D N, DAS P. Copper-catalyzed inter- and intramolecular C—N bond formation: Synthesis of benzimidazole-fused heterocycles[J]. J. Org. Chem., 2015, 80(18): 9321-9327  doi: 10.1021/acs.joc.5b01396

    15. [15]

      ZHOU W, LIU Y, YANG Y, DENG G. Copper-catalyzed intramolecular direct amination of sp2 C—H bonds for the synthesis of N-aryl acridones[J]. Chem. Commun., 2012, 48(86): 10678-10680  doi: 10.1039/c2cc35425j

    16. [16]

      XIE Z, PENG J, ZHU Q. Copper-mediated C(sp3)—H amination in a multiple C—N bond-forming strategy for the synthesis of N-heterocycles[J]. Org. Chem. Front., 2016, 3(1): 82-86  doi: 10.1039/C5QO00313J

    17. [17]

      LI Z, WU S S, LUO Z, LIU W, FENG C T, MA S T. Copper-promoted double oxidative C—H amination cascade for the synthesis of imidazo[1, 5-a]quinolines[J]. J. Org. Chem., 2016, 81(10): 4386-4392  doi: 10.1021/acs.joc.6b00569

    18. [18]

      GHOSH A K, MAHAPATRA T S, CLERAC R, MATHONIERE C, BERTOLASI V, RAY D. Direct C—N coupling in an in situ ligand transformation and the self-assembly of a tetrametallic [Ni4] staircase[J]. Inorg. Chem., 2015, 54(11): 5136-5138  doi: 10.1021/acs.inorgchem.5b00411

    19. [19]

      MULVIHILL M J, JI Q S, COATE H R, COOKE A, DONG H, FENG L, FOREMAN K, ROSENFELD-FRANKLIN M, HONDA A, MAK G, MULVIHILL K M, NIGRO A I, O′CONNOR M, PIRRIT C, STEINIG A G, SIU K, STOLZ K M, SUN Y, TAVARES P A R, YAO Y, GIBSON N W. Novel 2-phenylquinolin-7-yl-derived imidazo[1, 5-a]pyrazines as potent insulin-like growth factor-I receptor (IGF-IR) inhibitors[J]. Bioorg. Med. Chem., 2008, 16(3): 1359-1375  doi: 10.1016/j.bmc.2007.10.061

    20. [20]

      MUKAIYAMA H, NISHIMURA T, KOBAYASHI S, OZAWA T, KOMATSU N Y, KIKUCHI S, OONOTA H, KUSAMA H. Synthesis and c-Src inhibitory activity of imidazo[1, 5-a]pyrazine derivatives as an agent for treatment of acute ischemic stroke[J]. Bioorg. Med. Chem., 2007, 15(2): 868-885  doi: 10.1016/j.bmc.2006.10.041

    21. [21]

      WU D, YU Z, GAO D Z, WANG X, SHEN X, ZHU D R. A mixed-bridged linear trinuclear copper(Ⅱ) complex containing both square pyramidal and trigonal bipyramidal configuration[J]. Chinese J. Inorg. Chem., 2015, 31(8): 1619-1625

    22. [22]

      DING Y J, WANG Y. Synthesis and structure of trinuclear Cu complex {[Cu(HL)(EtOH)]2Cu}[J]. Chinese J. Inorg. Chem., 2011, 27(7): 1411-1416

    23. [23]

      WU HAO, ZHAO X L, ZHONG R B, DAI G G, WU W N, WANG Y. Synthesis, crystal structure and DNA interaction of a Cu(Ⅱ) complex with bis-hydrazone ligand bearing pyrazine unit[J]. Chinese J. Inorg. Chem., 2018, 34(7): 1917-1922

    24. [24]

      CHEN Q H, JING Z Y, SONG Y. Magnetostructural correlation and antisymmetric exchange of spin frustrated triangular [Cu3] in zero- dimensional and three-dimensional structure[J]. Chinese J. Inorg. Chem., 2020, 36(4): 659-665
       

    25. [25]

      LI Y, ZHONG X C, FENG A S, ZHAO Z Y. Synthesis, crystal structures and magnetic properties of two copper(Ⅱ) coordination compounds based on 5-bromoisophthalic acid and 2, 2′-bipyridine unit[J]. Chinese J. Inorg. Chem., 2020, 36(2): 345-351
       

    26. [26]

      BEOBIDE G, CASTILLO O, LUQUE A, GARCIA-COUCEIRO U, CARCIA-TERAN J P, ROMAN P. Supramolecular architectures and magnetic properties of coordination polymers based on pyrazinedicarboxylato ligands showing embedded water clusters[J]. Inorg. Chem., 2006, 45(14): 5367-5382

    27. [27]

      WANG Z D, YANG Y Sand LIN H Z. N, N′-bis(pyrazin-2-ylmethyl)pyrazine-2, 3-dicarb-oxamide[J]. IUCrData, 2016, 1: x161588

    28. [28]

      SHELDRICK G M. Crystal structure refinement with SHELXL[J]. Acta Crystallogr. Sect. C, 2015, C71: 3-8

    29. [29]

      DOLOMANOV O V, BOURHIS L J, GILDEA R J, HOWARD J A K, PUSCHMANN H. OLEX2: A complete structure solution, refinement and analysis program[J]. J. Appl. Crystallogr., 2009, 42(2): 339-341

    30. [30]

      KOYAMA N, ISHIDA T, NOGAMI T, KOGANE T. A pyrazine-bridged linear pentanuclear copper(Ⅱ) complex and related tri- and dinuclear complexes showing various coordination structures and magnetic couplings[J]. Polyhedron, 2008, 27(11): 2341-2348

    31. [31]

      WATANABE R, SHIMADA T, KOYAMA N, ISHIDA T, KOGANE T. Attempted synthesis of axial-equatorial pyrazine-bridged copper(Ⅱ) complexes towards homometallic ferromagnetic compounds[J]. Polyhedron, 2011, 30(18): 3165-3170

  • 加载中
    1. [1]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    2. [2]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    3. [3]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    4. [4]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    5. [5]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    6. [6]

      Xiaxia LIUXiaofang MALuxia GUOXianda HANSisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269

    7. [7]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    8. [8]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    9. [9]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    10. [10]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    11. [11]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    12. [12]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    13. [13]

      Teng-Yu HuangJunliang SunDe-Xian WangQi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758

    14. [14]

      Ruike HuKangmin WangJunxiang LiuJingxian ZhangGuoliang YangLiqiu WanBijin Li . Extended π-conjugated systems by external ligand-assisted C−H olefination of heterocycles: Facile access to single-molecular white-light-emitting and NIR fluorescence materials. Chinese Chemical Letters, 2025, 36(4): 110113-. doi: 10.1016/j.cclet.2024.110113

    15. [15]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    16. [16]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    17. [17]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    18. [18]

      He YaoWenhao JiYi FengChunbo QianChengguang YueYue WangShouying HuangMei-Yan WangXinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076

    19. [19]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    20. [20]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

Metrics
  • PDF Downloads(0)
  • Abstract views(148)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return