Citation: Ke QIAO, Yanlin LI, Shengli HUANG, Guoyu YANG. Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265 shu

Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes

  • Corresponding author: Shengli HUANG, huangsl@bit.edu.cn
  • Received Date: 12 July 2024
    Revised Date: 12 October 2024

Figures(16)

  • Developing asymmetric catalysts derived solely from octahedral centrochirality has garnered significant attention in the scientific community. Chiral-octahedral metal complexes can be classified into stereogenic-only-at-metal complexes and stereogenic-at-metal complexes with chiral ligands. This review introduces the design and syn-thesis of chiral-octahedral iridium and ruthenium complexes, which can be fine-tuned by altering the metal center, ligand combinations, and the chirality or achirality of the ligands. The applications of these complexes in asymmetric catalysis are then explored, considering catalysis via metal binding and catalysis via the ligand sphere. Addition-ally, the potential of using octahedral chiral metal complexes as building units for supramolecular structures and their integration with asymmetric catalysis are discussed, suggesting promising perspectives for broader applications.
  • 加载中
    1. [1]

      Bhat V, Welin E R, Guo X L, Stoltz B M. Advances in stereoconvergent catalysis from 2005 to 2015: Transition-metal-mediated stereoablative reactions, dynamic kinetic resolutions, and dynamic kinetic asymmetric transformations[J]. Chem. Rev., 2017,117(5):4528-4561.

    2. [2]

      Ahmad I, Shagufta , AlMallah A R. Advances in asymmetric oxidative kinetic resolution of racemic secondary alcohols catalyzed by chiral Mn(Ⅲ) salen complexes[J]. Chirality, 2017,29(12):798-810.

    3. [3]

      Zelewsky A V. Stereochemistry of coordination compounds[J]. From Alfred Werner to the 21st century. Chimia, 2014,68(5)297.

    4. [4]

      Chen L A, Xu W C, Huang B, Ma J J, Wang L, Xi J W, Harms K, Gong L, Meggers E. Asymmetric catalysis with an inert chiral-at-metal iridium complex[J]. J. Am. Chem. Soc., 2013,135(29):10598-10601.

    5. [5]

      Chen L A, Tang X J, Xi J W, Xu W C, Gong L, Meggers E. Chiral-atmetal octahedral iridium catalyst for the asymmetric construction of an all - carbon quaternary stereocenter[J]. Angew. Chem., 2013,52(52):14021-14025.

    6. [6]

      Zheng Y, Tan Y Q, Harms K, Marsch M, Riedel R, Zhang L L, Meggers E. Octahedral ruthenium complex with exclusive metal-centered chirality for highly effective asymmetric catalysis[J]. J. Am.Chem. Soc., 2017,139(12):4322-4325.

    7. [7]

      Cruchter T, Medvedev M G, Shen X D, Mietke T, Harms K, Marsch M, Meggers E. Asymmetric nucleophilic catalysis with an octahedral chiral-at-metal iridium(Ⅲ) complex[J]. ACS Catal., 2017,7(8):5151-5162.

    8. [8]

      Ghosh S K, Ganzmann C, Bhuvanesh N, Gladysz G A. Werner com-plexes with ω-dimethylaminoalkyl substituted ethylenediamine ligands: Bifunctional hydrogen - bond - donor catalysts for highly enantioselective michael additions[J]. Angew. Chem. Int. Ed., 2016,55(13):4356-4360.

    9. [9]

      Ehnbom A, Ghosh S K, Lewis K G, Gladysz G A. Octahedral Werner complexes with substituted ethylenediamine ligands: A stereochemical primer for a historic series of compounds now emerging as a modern family of catalysts[J]. Chem. Soc. Rev., 2016,45(24):6799-6811.

    10. [10]

      Ma J J, Ding X B, Hu Y, Huang Y, Gong L, Meggers E. Metal-templated chiral Brønsted base organocatalysis[J]. Nat. Commun., 2014,5(1)4531.

    11. [11]

      Huo H H, Fu C, Wang C Y, Harms K, Meggers E. Metal-templated enantioselective enamine/H - bonding dual activation catalysis[J]. Chem. Commun., 2014,50(72):10409-10411.

    12. [12]

      Cruchter T, Larionov V A. Asymmetric catalysis with octahedral stereogenic-at-metal complexes featuring chiral ligands[J]. Coord.Chem. Rev., 2018,376:95-113.

    13. [13]

      Zhang L L, Meggers E. Stereogenic-only-at-metal asymmetric catalysts[J]. Chem. Asian J., 2017,12(18):2335-2342.

    14. [14]

      Constable E C. Stereogenic metal centres—From Werner to supramolecular chemistry[J]. Chem. Soc. Rev., 2013,42(4):1637-1651.

    15. [15]

      Meggers E. Asymmetric synthesis of octahedral coordination complexes[J]. Eur. J. Inorg. Chem., 2011(19):2911-2926.

    16. [16]

      Chen C T, Tsai C C, Tsou P K, Huang G T, Yu C H. Enantiodivergent Steglich rearrangement of O-carboxylazlactones catalyzed by a chirality switchable helicene containing a 4-aminopyridine unit[J]. Chem. Sci., 2017,8(1):524-529.

    17. [17]

      Nicolaou K C, Liu G D, Beabout K, McCurry M D, Shamoo Y. Asymmetric alkylation of anthrones, enantioselective total synthesis of(-)-and (+)-viridicatumtoxins B and analogues thereof: Absolute configuration and potent antibacterial agents[J]. J. Am. Chem. Soc., 2017,139(10):3736-3746.

    18. [18]

      Zelewsky A V, Mamula O. The bright future of stereoselective synthesis of co - ordination compounds[J]. J. Chem. Soc. - Dalton Trans., 2000(3):219-231.

    19. [19]

      Mürner H, Belser P, Zelewsky A V. New configurationally stable chiral building blocks for polynuclear coordination compounds: Ru(chiragen[X])Cl2.[J]. J. Am. Chem. Soc., 1996,118(34):7989-7994.

    20. [20]

      Mürner H, Zelewsky A V, Stoeckli-Evans H. Octahedral complexes with predetermined helical chirality: Xylene-bridged bis([4, 5] -pineno-2, 2'-bipyridine) ligands (chiragen[o-, m-, p-xyl]) with ruthenium(Ⅱ)[J]. Inorg. Chem., 1996,35(13):3931-3935.

    21. [21]

      Zelewsky A V. Stereoselective synthesis of coordination compounds[J]. Coord. Chem. Rev., 1999,190:811-825.

    22. [22]

      Gong L, Chen L A, Meggers E. Asymmetric catalysis mediated by the ligand sphere of octahedral chiral - at - metal complexes[J]. Angew. Chem. Int. Ed., 2014,53(41):10868-10874.

    23. [23]

      Luo S, Zhang X, Zheng Y, Harms K, Zhang L L, Meggers E. Enantioselective alkynylation of aromatic aldehydes catalyzed by a sterically highly demanding chiral - at - rhodium Lewis acid[J]. J. Org. Chem., 2017,82(17):8995-9005.

    24. [24]

      Chavarot M, Ménage S, Hamelin O, Charnay F, Pécaut J, Fontecave M. "Chiral-at-metal"octahedral ruthenium(Ⅱ) complexes with achiral ligands: A new type of enantioselective catalyst[J]. Inorg. Chem., 2003,42(16):4810-4816.

    25. [25]

      Hamelin O, Rimboud M, Pécaut J, Fontecave M. Chiral - at - metal ruthenium complex as a metalloligand for asymmetric catalysis[J]. Inorg. Chem., 2007,46(13):5354-5360.

    26. [26]

      Ganzmann C, Gladysz J A. Phase transfer of enantiopure Werner cations into organic solvents: An overlooked family of chiral hydrogen bond donors for enantioselective catalysis[J]. Chem. - Eur. J., 2008,14(18):5397-5400.

    27. [27]

      Zhang L L, Meggers E. Steering asymmetric Lewis acid catalysis exclusively with octahedral metal - centered chirality[J]. Acc. Chem.Res., 2017,50(2):320-330.

    28. [28]

      Shen X D, Huo H H, Wang C Y, Zhang B, Harms K, Meggers E. Octahedral chiral - at - metal iridium catalysts: Versatile chiral lewis acids for asymmetric conjugate additions[J]. Chem. - Eur. J., 2015,21(27):9720-9726.

    29. [29]

      Wang C Y, Chen L A, Huo H H, Shen X D, Harms K, Gong L, Meggers E. Asymmetric Lewis acid catalysis directed by octahedral rhodium centrochirality[J]. Chem. Sci., 2015,6(2):1094-1100.

    30. [30]

      Tan Y Q, Yuan W, Gong L, Meggers E. Aerobic asymmetric dehydrogenative cross-coupling between two Csp3—H groups catalyzed by a chiral-at-metal rhodium complex[J]. Angew. Chem., 2015,54(44):13045-13048.

    31. [31]

      Xu W C, Arieno M, Loew H, Huang K F, Xie X L, Cruchter T, Ma Q, Xi J W, Huang B, Wiest O, Gong L, Meggers E. Metal - templated design: Enantioselective hydrogen - bond - driven catalysis requiring only parts-per-million catalyst loading[J]. J. Am. Chem. Soc., 2016,138(28):8774-8780.

    32. [32]

      Wang C Y, Zheng Y, Huo H H, Röse P, Zhang L L, Harms K, Hilt G, Meggers E. Merger of visible light induced oxidation and enantioselective alkylation with a chiral iridium catalyst[J]. Chem. - Eur. J., 2015,21(20):7355-7359.

    33. [33]

      Huo H H, Wang C Y, Harms K, Meggers E. Enantioselective, catalytic trichloromethylation through visible-light-activated photoredox catalysis with a chiral iridium complex[J]. J. Am. Chem. Soc., 2015,137(30):9551-9554.

    34. [34]

      Wang C Y, Qin J, Shen X D, Riedel R, Harms K, Meggers E. Asymmetric radical-radical cross-coupling through visible-light-activated iridium catalysis[J]. Angew. Chem., 2016,55(2):685-688.

    35. [35]

      Meggers E, Huo H H, Huang X Q, Shen X D, Harms K. Visible-lightactivated enantioselective perfluoroalkylation with a chiral iridium photoredox catalyst[J]. Synlett, 2016,27(5):749-753.

    36. [36]

      Tian C, Gong L, Meggers E. Chiral - at - metal iridium complex for efficient enantioselective transfer hydrogenation of ketones[J]. Chem.Commun., 2016,52(22):4207-4210.

    37. [37]

      Lamansky S, Djurovich P, Murphy D, Abdel-Razzaq F, Kwong R, Tsyba I, Bortz M, Mui B, Bau R, Thompson M E. Synthesis and characterization of phosphorescent cyclometalated iridium complexes[J]. Inorg. Chem., 2001,40(7):1704-1711.

    38. [38]

      Coe B J, Glenwright S J. Trans-effects in octahedral transition metal complexes[J]. Coord. Chem. Rev., 2000,203(1):5-80.

    39. [39]

      Xu G Q, Liang H, Fang J, Jia Z L, Chen J Q, Xu P F. Catalytic enantioselective α-fluorination of 2-acyl imidazoles via iridium complexes[J]. Chem. Asian J., 2016,11(23):3355-3358.

    40. [40]

      Shen X D, Harms K, Marsch M, Meggers E. A rhodium catalyst superior to iridium congeners for enantioselective radical amination activated by visible light[J]. Chem.-Eur. J., 2016,22(27):9102-9105.

    41. [41]

      Zhou Z J, Li Y J, Gong L, Meggers E. Enantioselective 2-alkylation of 3-substituted indoles with dual chiral lewis acid/hydrogen-bondmediated catalyst[J]. Org. Lett., 2017,19(1):222-225.

    42. [42]

      Zhou Z J, Chen S M, Hong Y B, Winterling E, Tan Y Q, Hemming M, Harms K, Houk K N, Meggers E. Non- C2-symmetric chiral-atruthenium catalyst for highly efficient enantioselective intramolecular C(sp3)—H amidation[J]. J. Am. Chem. Soc., 2019,141(48):19048-19057.

    43. [43]

      Winterling E, Ivlev S, Meggers E. Chiral-at-ruthenium catalysts with mixed normal and abnormal N - heterocyclic carbene ligands[J]. Organometallics, 2021,40(8):1148-1155.

    44. [44]

      Han F, Choi P H, Ye C X, Grell Y, Xie X L, Ivlev S I, Chen S M, Meggers E. Cyclometalated chiral-at-ruthenium catalyst for enantioselective ring-closing C(sp3)—H carbene insertion to access chiral flavanones[J]. ACS Catal., 2022,12(16):10304-10312.

    45. [45]

      Ye C X, Meggers E. Chiral-at-ruthenium catalysts for nitrene-mediated asymmetric C—H functionalizations[J]. Acc. Chem. Res., 2023,56(9):1128-1141.

    46. [46]

      Nicewicz D A, MacMillan D W C. Merging photoredox catalysis with organocatalysis: The direct asymmetric alkylation of aldehydes[J]. Science, 2008,322(5898):77-80.

    47. [47]

      Nagib D A, Scott M E, MacMillan D W C. Enantioselective α-trifluoromethylation of aldehydes via photoredox organocatalysis[J]. J. Am. Chem. Soc., 2009,131(31)10875.

    48. [48]

      Shaw M H, Twilton J, MacMillan D W C. Photoredox catalysis in organic chemistry[J]. J. Org. Chem., 2016,81(16):6898-6926.

    49. [49]

      Kärkäs M D, Porco J A, Stephenson C R J. Photochemical approaches to complex chemotypes: Applications in natural product synthesis[J]. Chem. Rev., 2016,116(17):9683-9747.

    50. [50]

      Ravelli D, Protti S, Fagnoni M. Carbon - carbon bond forming reactions via photogenerated intermediates[J]. Chem. Rev., 2016,116(17):9850-9913.

    51. [51]

      Skubi K L, Blum T R, Yoon T P. Dual catalysis strategies in photochemical synthesis[J]. Chem. Rev., 2016,116(17):10035-10074.

    52. [52]

      Romero N A, Nicewicz D A. Organic photoredox catalysis[J]. Chem.Rev., 2016,116(17):10075-10166.

    53. [53]

      Huo H H, Shen X D, Wang C Y, Zhang L L, Röse P, Chen L A, Harms K, Marsch M, Hilt G, Meggers E. Asymmetric photoredox transition-metal catalysis activated by visible light[J]. Nature, 2014,515(7525):100-103.

    54. [54]

      Meggers E. Exploiting octahedral stereocenters: From enzyme inhibition to asymmetric photoredox catalysis[J]. Angew. Chem. Int. Ed., 2017,56(21):5668-5675.

    55. [55]

      Zheng C, You S L. Transfer hydrogenation with Hantzsch esters and related organic hydride donors[J]. Chem. Soc. Rev., 2012,41(6):2498-2518.

    56. [56]

      You S L. Recent developments in asymmetric transfer hydrogenation with Hantzsch esters: A biomimetic approach[J]. Chem. Asian J., 2007,2(7):820-827.

    57. [57]

      Skubi K L, Kidd J B, Jung H, Guzei I A, Baik M H, Yoon T P. Enantioselective excited-state photoreactions controlled by a chiral hydrogen - bonding iridium sensitizer[J]. J. Am. Chem. Soc., 2017,139(47):17186-17192.

    58. [58]

      Zheng J, Swords W B, Jung H, Skubi K L, Kidd J B, Meyer G J, Baik M H, Yoon T P. Enantioselective intermolecular excited-state photoreactions using a chiral Ir triplet sensitizer: Separating association from energy transfer in asymmetric photocatalysis[J]. J. Am. Chem.Soc., 2019,141(34):13625-13634.

    59. [59]

      Kurono N, Arai K, Uemura M, Ohkuma T. [Ru(phgly)2(binap)] /Li2CO3: A highly active, robust, and enantioselective catalyst for the cyanosilylation of aldehydes.[J]. Angew. Chem. Int. Ed., 2008,47(35):6643-6646.

    60. [60]

      Kurono N, Nii N, Sakaguchi Y, Uemura M, Ohkuma T. Asymmetric hydrocyanation of α, β - unsaturated ketones into β - cyano ketones with the [Ru(phgly)2(binap)] /C6H5OLi catalyst system[J]. Angew. Chem.Int. Ed., 2011,50(24):5541-5544.

    61. [61]

      Kurono N, Yoshikawa T, Yamasaki M, Ohkuma T. Enantioselective hydrocyanation of aldehydes catalyzed by [Li{Ru(phgly)2(binap)}] X(X=Cl, Br)[J]. Org. Lett., 2011,13(5):1254-1257.

    62. [62]

      Xu W C, Shen X, Ma Q, Gong L, Meggers E. Restricted conformation of a hydrogen bond mediated catalyst enables the highly efficient enantioselective construction of an all - carbon quaternary stereocenter[J]. ACS Catal., 2016,6(11):7641-7646.

    63. [63]

      Fujita M, Oguro D, Miyazawa M, Oka H, Yamaguchi K, Ogura K. Self - assembly of ten molecules into nanometre - sized organic host frameworks[J]. Nature, 1995,378(6556):469-471.

    64. [64]

      Fujita M. Metal-directed self-assembly of two-and three-dimensional synthetic receptors[J]. Chem. Soc. Rev., 1998,27(6):417-425.

    65. [65]

      Olenyuk B, Whiteford J A, Fechtenkötter A, Stang P J. Self-assembly of nanoscale cuboctahedra by coordination chemistry[J]. Nature, 1999,398(6730):796-799.

    66. [66]

      Guo J, Xu Y W, Li K, Xiao L M, Chen S, Wu K, Chen X D, Fan Y Z, Liu J M, Su C Y. Regio- and enantioselective photodimerization within the confined space of a homochiral ruthenium/palladium heterometallic coordination cage[J]. Angew. Chem. Int. Ed., 2017,56(14):3852-3856.

    67. [67]

      Schotes C, Mezzetti A. Asymmetric Diels-Alder reactions of unsaturated β-ketoesters catalyzed by chiral ruthenium PNNP complexes[J]. J. Am. Chem. Soc., 2010,132(11):3652-3653.

    68. [68]

      Hartung J, Dornan P K, Grubbs R H. Enantioselective olefin metathesis with cyclometalated ruthenium complexes[J]. J. Am. Chem. Soc., 2014,136(37):13029-13037.

    69. [69]

      Guo J, Fan Y Z, Lu Y L, Zheng S P, Su C Y. Visible-light photocatalysis of asymmetric [2+2] cycloaddition in cage -confined nanospace merging chirality with triplet-state photosensitization[J]. Angew. Chem. Int. Ed., 2020,59(22):8661-8669.

    70. [70]

      Girvin Z C, Cotter L F, Yoon H, Chapman S J, Mayer J M, Yoon T P, Miller S J. Asymmetric photochemical[2+2] -cycloaddition of acyclic vinylpyridines through ternary complex formation and an uncontrolled sensitization mechanism[J]. J. Am. Chem. Soc., 2022,144(43):20109-20117.

    71. [71]

      Salomó E, Gallen A, Sciortino G, Ujaque G, Grabulosa A, Lledós A, Riera A, Verdaguer X. Direct asymmetric hydrogenation of N-methyl and N-alkyl imines with an Ir(Ⅲ)H catalyst[J]. J. Am. Chem. Soc., 2018,140(49):16967-16970.

  • 加载中
    1. [1]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    2. [2]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    3. [3]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    4. [4]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    5. [5]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    6. [6]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    7. [7]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    8. [8]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    9. [9]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    10. [10]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    11. [11]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    12. [12]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    13. [13]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    14. [14]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    15. [15]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    16. [16]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    19. [19]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    20. [20]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

Metrics
  • PDF Downloads(65)
  • Abstract views(1945)
  • HTML views(717)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return