Citation: Xiaotian ZHU, Fangding HUANG, Wenchang ZHU, Jianqing ZHAO. Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260 shu

Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect

Figures(7)

  • Two surface and interface engineering strategies were developed, i.e., the TiO2@Al2O3 oxide dual coating in a heterostructure and binary Ti#Al based cation co-doping in a gradient surface enrichment to modify NaNi1/3Fe1/3Mn1/3O2 (NFM) cathode material using atomic layered deposition (ALD) and high-temperature annealing runaway temperatures to 285.9 and 289.5 ℃ on the fully-charged condition respectively, corresponding to the increment of 6.1 and 9.7 ℃ compared to the NFM via differential scanning calorimetric (DSC) measurements. In-situ differential electrochemical mass spectrometry (DEMS) was further employed to analyze gas components and corresponding contents in the first two cycles of three different cathodes. As a result, the surface coating benefits from restricting the generation of major H2 components by effectively suppressing the protonation of the electrolyte solvents. By contrast, the lattice doping works for impeding the follow-up reactions of decomposed products from the initial decomposition of electrolytes. process, and their effects on improving electrochemical performance and thermal stability of the NFM cathode, and suppressing gas generation during its sodiation/desodiation were also evaluated. When the capacity reached 60% of the capacity of the second cycle in a voltage range of 2.0-4.0 V (vs Na/Na+) at a high current density of 1C (120 mA· g-1), the surface-coated NFM@TiO2(10)@Al2O3(10) and lattice-doped NFM#Ti(35)#Al(10) cathodes (the number in parentheses responds to the cycles for ALD deposition) could maintain 319 and 358 cycles, respectively, more than that of the unmodified NFM cathode (250 cycles). Moreover, two modified cathodes also underwent their thermal runaway temperatures to 285.9 and 289.5 ℃ on the fully-charged condition respectively, corresponding to the increment of 6.1 and 9.7 ℃ compared to the NFM via differential scanning calorimetric (DSC) measurements. In-situ differential electrochemical mass spectrometry (DEMS) was further employed to analyze gas components and corresponding contents in the first two cycles of three different cathodes. As a result, the surface coating benefits from restricting the generation of major H2 components by effectively suppressing the protonation of the electrolyte solvents.By contrast, the lattice doping works for impeding the follow-up reactions of decomposed products from the initial decomposition of electrolytes.
  • 加载中
    1. [1]

      HERBERZ M, HAHNEL U J J, BROSCH T. Counteracting electric vehicle range concern with a scalable behavioural intervention[J]. Nat. Energy, 2022,7(6):503-510. doi: 10.1038/s41560-022-01028-3

    2. [2]

      CHEN M Z, ZHANG Y Y, XING G C, CHOU S L, TANG Y X. Electrochemical energy storage devices working in extreme conditions[J]. Energy Environ. Sci., 2021,14(6):3323-3351. doi: 10.1039/D1EE00271F

    3. [3]

      YANG T Z, LUO D, ZHANG X Y, GAO S H, GAO R, MA Q Y, PARK H W, OR T, ZHANG Y G, CHEN Z W. Sustainable regeneration of spent cathodes for lithium-ion and post-lithium-ion batteries[J]. Nat. Sustain., 2024,7:776-785. doi: 10.1038/s41893-024-01351-5

    4. [4]

      WU F X, MAIER J, YU Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chem. Soc. Rev., 2020,49(5):1569-1614. doi: 10.1039/C7CS00863E

    5. [5]

      ZHANG H, GAO Y, LIU X H, ZHOU L F, LI J Y, XIAO Y, PENG J, WANG J Z, CHOU S L. Long-cycle-life cathode materials for sodium-ion batteries toward large-scale energy storage systems[J]. Adv. Energy Mater., 2023,13(23)2300149. doi: 10.1002/aenm.202300149

    6. [6]

      ZHAO L, ZHANG T, LI W, LI T, ZHANG L, ZHANG X G, WANG Z Y. Engineering of sodium-ion batteries: Opportunities and challenges[J]. eScience, 2023,24:172-183.

    7. [7]

      ABRAHAM K M. How comparable are sodium-ion batteries to lithium-ion counterparts?[J]. ACS Energy Lett., 2020,5(11):3544-3547. doi: 10.1021/acsenergylett.0c02181

    8. [8]

      ZHU W C, ZHU X T, QI J Z, YAO J Y, SHEN Y B, CHENG G J, HUANG X, YANG S, ZHANG H, CHIANG C L, LIN Y G, BAI J M, YIN W J, GAO L J, CHEN L W, WANG F, ZHAO J Q. Stabilizing high-Ni cathodes with gradient surface Ti-enrichment[J]. Chem. Eng. J., 2024,489151208. doi: 10.1016/j.cej.2024.151208

    9. [9]

      ZUO W H, INNOCENTI A, ZARRABEITIA M, BRESSER D, YANG Y, PASSERINI S. Layered oxide cathodes for sodium-ion batteries: Storage mechanism, electrochemistry, and techno-economics[J]. Acc. Chem. Res., 2023,56(3):284-296. doi: 10.1021/acs.accounts.2c00690

    10. [10]

      LAN Y Q, YAO W J, HE X L, SONG T Y, TANG Y B. Mixed polyanionic compounds as positive electrodes for low-cost electrochemical energy storage[J]. Angew. Chem.‒Int. Edit., 2020,59(24):9255-9262. doi: 10.1002/anie.201915666

    11. [11]

      PENG J, ZHANG W, LIU Q N, WANG J Z, CHOU S L, LIU H K, DOU S X. Prussian blue analogues for sodium-ion batteries: Past, present, and future[J]. Adv. Mater., 2022,34(15)2108384. doi: 10.1002/adma.202108384

    12. [12]

      JIANG C Y, WANG Y S, Xin Y H, DING X Y, LIU S K, PANG Y F, CHEN B R, WANG Y S, LIU L, WU F, GAO H C. Toward high stability of O3-type NaNi1/3Fe1/3Mn1/3O2 cathode material with zirconium substitution for advanced sodium‑ion batteries[J]. Carbon Neutral., 2024,3(2):233-244. doi: 10.1002/cnl2.115

    13. [13]

      HONG N Y, LI J W, WANG H J, HU X, Y ZHAO B, HUA F, MEI Y, HUANG J N, ZHANG B C, JIAN W S, GAO J Q, TIAN Y, SHI X X, DENG W T, ZOU G Q, HOU H S, HU Z G, LONG Z, JI X B. Regulating phase transition and restraining fe distortion at high potential window via rare earth metal incorporation on O3-type layered cathodes[J]. Adv. Funct. Mater., 2024,42402398.

    14. [14]

      REN Q H, LI Y, LEI L L, WANG G M, HOU J, XU W L, CHEN S M, LI S Y, CHEN L P, WANG J. The critical role of titanium cation for the enhanced Na-ion layer spacing of O3 layered oxide cathode materials[J]. Mater. Today Commun., 2024,39109284. doi: 10.1016/j.mtcomm.2024.109284

    15. [15]

      LIU Y F, HAN K, PENG D N, KONG L Y, SU Y, LI H W, HU H Y, LI J Y, WANG H R, FU Z Q, MA Q. Layered oxide cathodes for sodium-ion batteries: From air stability, interface chemistry to phase transition[J]. InfoMat, 2023,5(6)e12422. doi: 10.1002/inf2.12422

    16. [16]

      XU C L, CAI H R, CHEN Q L, KONG X Q, PAN H L, HU Y S. Origin of air-stability for transition metal oxide cathodes in sodium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2022,14(4):5338-5345. doi: 10.1021/acsami.1c21103

    17. [17]

      YOU Y, SONG B H, JARVIS K, HUQ A, MANTHIRAM A. Insights into the improved chemical stability against water of LiF-incorporated layered oxide cathodes for sodium-ion batteries[J]. ACS Appl. Energy Mater., 2019,1(1):89-95.

    18. [18]

      NWANNA E C, BITIRE S, IMOISILI P E, JEN T C. An overview of the application of atomic layer deposition process for lithium-ion based batteries[J]. Int. J. Energy Res., 2022,46(8):10499-10521. doi: 10.1002/er.7941

    19. [19]

      YU F, DU L, ZHANG G, SU F M, WANG W C, SUN S H. Electrode engineering by atomic layer deposition for sodium-ion batteries: From traditional to advanced batteries[J]. Adv. Funct. Mater., 2019,30(9)1906890.

    20. [20]

      ZHAO J Q, WANG Y. Surface modifications of Li-ion battery electrodes with various ultrathin amphoteric oxide coatings for enhanced cycleability[J]. J. Solid State Electrochem., 2012,17:1049-1058.

    21. [21]

      ZHAO J Q, WANG Y. Ultrathin surface coatings for improved electrochemical performance of lithium ion battery electrodes at elevated temperature[J]. J. Phys. Chem. C, 2012,116(22):11867-11876. doi: 10.1021/jp3010629

    22. [22]

      ZHAO J Q, WANG Y. Atomic layer deposition of epitaxial ZrO2 coating on LiMn2O4 nanoparticles for high-rate lithium ion batteries at elevated temperature[J]. Nano Energy, 2013,2(5):882-889. doi: 10.1016/j.nanoen.2013.03.005

    23. [23]

      ZHU W C, HUANG X, LIU T T, XIE Z Q, WANG Y, TIAN K, BU L M, WANG H B, GAO L J, ZHAO J Q. Ultrathin Al2O3 coating on LiNi0.8Co0.1Mn0.1O2 cathode material for enhanced cycleability at extended voltage ranges[J]. Coatings, 2019,9(2)92. doi: 10.3390/coatings9020092

    24. [24]

      DESAI P, HUANG J Q, HIJAZI H, ZHANG L T, MARIYAPPAN S, TARASCON J M. Deciphering interfacial reactions via optical sensing to tune the interphase chemistry for optimized Na-ion electrolyte formulation[J]. Adv. Energy Mater., 2021,11(36)2101490. doi: 10.1002/aenm.202101490

    25. [25]

      FU Y P, ZHU C B. Design strategies for sodium electrode materials: Solid-state ionics perspective[J]. Acta Phys.‒Chim. Sin., 2023,39(3):16-32.

    26. [26]

      GONG C, PU S D, ZHANG S M, YUAN Y, NING Z Y, YANG S X, GAO X W, CHAU C, LI Z X, LIU J L, PI L Q, LIU B Y, CAPHONE I, HU B K, MELVIN D L R, PASTA M, BRUCE P G, ROBERTSON A W. The role of an elastic interphase in suppressing gas evolution and promoting uniform electroplating in sodium metal anodes[J]. Energy Environ. Sci., 2023,16:535-545. doi: 10.1039/D2EE02606F

    27. [27]

      HAO Y N, CAI Z M. Holey graphene for sodium-ion battery anode material[J]. Acta Phys.‒Chim. Sin., 2023,39(11)2303046.

    28. [28]

      LU Z Y, YANG H J, GUO Y, HE P, WU S C, YANG Q H, ZHOU H S. Electrolyte sieving chemistry in suppressing gas evolution of sodium-metal batteries[J]. Angew. Chem.‒Int. Edit., 2022,134(30)e202206340. doi: 10.1002/ange.202206340

    29. [29]

      SIM R, MANTHIRAM A. Factors influencing gas evolution from high-nickel layered oxide cathodes in lithium-based batteries[J]. Adv. Energy Mater., 2024,14(8)202303985.

    30. [30]

      YIN W N, CAI Y T, XIE L B, HUANG H, ZHU E C, PAN J A, BU J P, CHEN H, YUAN Y, ZHUANG Z C, WANG L L. Revisited electrochemical gas evolution reactions from the perspective of gas bubbles[J]. Nano Res., 2022,16(4):4381-4398.

    31. [31]

      ZHAO H J, WANG J, SHAO H Y, XU K, DENG Y H. Gas generation mechanism in Li-metal batteries[J]. Energy Environ. Mater., 2021,5(1):327-336.

    32. [32]

      METZGER M, STREHLE B, SOLCHENBACH S, GASTEIGER H A. Origin of H2 evolution in LIBs: H2O reduction vs. electrolyte oxidation[J]. J. Electrochem. Soc., 2016,163(5):A798-A809. doi: 10.1149/2.1151605jes

    33. [33]

      FENG Y H, CHENG Z W, XU C L, YU L Z, SI D, YUAN B H, LIU M T, ZHAO B, WANG P F, HAN X G. Low-cost Al-doped layered cathodes with improved electrochemical performance for rechargeable sodium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2022,14(20):23465-23473. doi: 10.1021/acsami.2c03469

    34. [34]

      LI X Y, LIANG L W, SU M S, WANG L X, ZHANG Y M, SUN J F, LIU Y, HOU L R, YUAN C Z. Multi-level modifications enabling chemomechanically stable Ni-rich O3-layered cathode toward wide-temperature-tolerance quasi-solid-state Na-ion batteries[J]. Adv. Energy Mater., 2023,13(9)202203701.

  • 加载中
    1. [1]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    2. [2]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    3. [3]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    6. [6]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    7. [7]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    8. [8]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    9. [9]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    10. [10]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    13. [13]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    14. [14]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    15. [15]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    16. [16]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    17. [17]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    18. [18]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    19. [19]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    20. [20]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

Metrics
  • PDF Downloads(22)
  • Abstract views(1007)
  • HTML views(288)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return