Citation: Yaping ZHANG, Tongchen WU, Yun ZHENG, Bizhou LIN. Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256 shu

Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property

  • Corresponding author: Yaping ZHANG, ypzhang@jmu.edu.cn
  • Received Date: 5 July 2024
    Revised Date: 4 January 2025

Figures(6)

  • Employing an exfoliation-reassembly route, β-Bi2O3 pillared CoAl layered double hydroxide (CoAl-LDH) nanohybrid (β-Bi2O3/CoAl-LDH) was successfully fabricated using the delaminated CoAl-LDH nanosheets as the host and the β-Bi2O3 nanosol as the guest. The as-prepared catalyst morphology, structure, and photoelectrochemical behaviors were characterized by X-ray diffraction, transmission electron microscopy, UV-Vis absorption spectroscopy, X-ray photoelectron spectroscopy, etc. The pillared nanohybrid β-Bi2O3/CoAl-LDH shows a pillared interlayer region with a spacing of 2.1 nm, an expanded specific surface area of 62 m2·g-1, and superior visible-light response-ability. Under visible light radiation, the photocatalytic properties were investigated by tetracycline (TC) degradation. β-Bi2O3/CoAl-LDH exhibits a high degradation efficiency and 91.3% of TC was degraded within 90 min, much higher than its parents β-Bi2O3 and CoAl-LDH. The radial capture and electron paramagnetic resonance experiments reveal that oxygen radical ·O2- and hydroxyl radical ·OH were the predominant radicals in the photocatalytic system, which is attributed to the synergistic effect between β-Bi2O3 and CoAl-LDH. Their electronic coupling interactions lead to the formation of Z-scheme heterojunction in the pillared nanohybrid. The separation efficiency of the photogenerated electron-hole pairs is improved and the photocatalytic activity is enhanced significantly.
  • 加载中
    1. [1]

      JABBAR Z H, GRAIMED B H. Recent developments in industrial organic degradation via semiconductor heterojunctions and the parameters affecting the photocatalytic process: A review study[J]. J. Water Process Eng., 2022,47102671. doi: 10.1016/j.jwpe.2022.102671

    2. [2]

      WANG H L, ZHANG L S, CHEN Z G, HU J Q, LI S J, WANG Z H, LIU J S, WANG X C. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances[J]. Chem. Soc. Rev., 2014,43(15):5234-5244. doi: 10.1039/C4CS00126E

    3. [3]

      ZHANG X Y, CHEN P, ZHAO Y X, LI X J, YANG S J, YANG Y. Construction and photocatalytic properties of MOF-808/Bi2MoO6 composites[J]. Chinese J. Inorg. Chem., 2023,39(5):805-814.  

    4. [4]

      BERA K K, MAJUMDAR R, CHAKRABORTY M, BHATTACHARYA S K. Phase control synthesis of α, β and α/β Bi2O3 hetero-junction with enhanced and synergistic photocatalytic activity on degradation of toxic dye, rhodamine-B under natural sunlight[J]. J. Hazard. Mater., 2018,352:182-191. doi: 10.1016/j.jhazmat.2018.03.029

    5. [5]

      PANG Y J, LI Y W, XU G Q, HU Y T, KOU Z K, FENG Q, LV J, ZHANG Y, WANG J, WU Y C. Z-scheme carbon-bridged Bi2O3/TiO2 nanotube arrays to boost photoelectrochemical detection performance[J]. Appl. Catal. B-Environ., 2019,248:255-263. doi: 10.1016/j.apcatb.2019.01.077

    6. [6]

      LIU X Y, YANG Z, ZHANG L. In-situ fabrication of 3D hierarchical flower-like β-Bi2O3@CoO Z-scheme heterojunction for visible-driven simultaneous degradation of multi-pollutants[J]. J. Hazard. Mater., 2021,403123566. doi: 10.1016/j.jhazmat.2020.123566

    7. [7]

      SHAFAWI A N, MAHMUD R A, AHMED A K, PUTRI L K, MOHAMED A R. Bi2O3 particles decorated on porous g-C3N4 sheets: Enhanced photocatalytic activity through a direct Z-scheme mechanism for degradation of reactive black 5 under UV-Vis light[J]. J. Photochem. Photobiol. A-Chem., 2020,389112289. doi: 10.1016/j.jphotochem.2019.112289

    8. [8]

      PANG Y J, LI Y W, XU G Q, HU Y T, KOU Z K, FENG Q, LV J, ZHANG Y, WANG J, WU Y C. Z-scheme carbon-bridged Bi2O3/TiO2 nanotube arrays to boost photoelectrochemical detection performance[J]. Appl. Catal. B-Environ., 2019,248:255-263. doi: 10.1016/j.apcatb.2019.01.077

    9. [9]

      NAGAR A, SOUMEN B. Fabrication of 3D porous peony flower-like β-Bi2O3/BiOCl heterostructure for synergistically boosting the visible-light-driven degradation of organic pollutants[J]. Environ. Technol. Innov., 2021,24101956. doi: 10.1016/j.eti.2021.101956

    10. [10]

      ZHANG G H, ZHANG X Q, MENG Y, PAN G X, NI Z M, XIA S J. Layered double hydroxides-based photocatalysts and visible-light driven photodegradation of organic pollutants: A review[J]. Chem. Eng. J., 2020,392123684. doi: 10.1016/j.cej.2019.123684

    11. [11]

      ZHANG G H, LIN B Z, QIU Y Q, HE L W, CHEN Y L, GAO B F. Highly efficient visible-light-driven photocatalytic hydrogen generation by immobilizing CdSe nanocrystals on ZnCr-layered double hydroxide nanosheets[J]. Int. J. Hydrog. Energy, 2015,40(14):4758-4765. doi: 10.1016/j.ijhydene.2015.02.055

    12. [12]

      GHOLAMI P, KHATAEE A, SOLTANI R D C, DINPAZHOH L, BHATNAGAR A. Photocatalytic degradation of gemifloxacin antibiotic using Zn-Co-LDH@biochar nanocomposite[J]. J. Hazard. Mater., 2020,382121070. doi: 10.1016/j.jhazmat.2019.121070

    13. [13]

      ZHAO Y F, ZHAO Y X, WATERHOUSE G I N, ZHENG L R, CAO X Z, TENG F, WU L Z, TUNG C H, O'HARE D, ZHANG T R. Layered-double-hydroxide nanosheets as efficient visible-light-driven photocatalysts for dinitrogen fixation[J]. Adv. Mater., 2017,29(42)1703828. doi: 10.1002/adma.201703828

    14. [14]

      ZHAO Y, WEI M, LU J, WANG Z L, DUAN X. Biotemplated hierarchical nanostructure of layered double hydroxides with improved photocatalysis performance[J]. ACS Nano, 2009,3(12):4009-4016. doi: 10.1021/nn901055d

    15. [15]

      XIA S J, ZHANG G H, MENG Y, YANG C, NI Z M, HU J. Kinetic and mechanistic analysis for the photodegradation of gaseous formaldehyde by core-shell CeO2@LDHs[J]. Appl. Catal. B-Environ., 2020,278119266. doi: 10.1016/j.apcatb.2020.119266

    16. [16]

      ZIARATI A, BADIEI A, GRILLO R, BURGI T. 3D yolk@shell TiO2-x/LDH architecture: Tailored structure for visible light CO2 conversion[J]. ACS Appl. Mater. Interfaces, 2019,11(6):5903-5910. doi: 10.1021/acsami.8b17232

    17. [17]

      LU X Y, XUE H R, GONG H, BAI M J, TANG D M, MA R Z, SASAKI T. 2D layered double hydroxide nanosheets and their derivatives toward efficient oxygen evolution reaction[J]. Nano - Micro Lett., 2020,12(1)86. doi: 10.1007/s40820-020-00421-5

    18. [18]

      LIU Z, MA R, OSADA M, LYI N, EBINA Y. Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide: Assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies[J]. J. Am. Chem. Soc., 2006,128(14):4872-4880. doi: 10.1021/ja0584471

    19. [19]

      ZHANG G H, LIN B Z, YANG W W, JIANG S F, YAO Q R, CHEN Y L, GAO B F. Highly efficient photocatalytic hydrogen generation by incorporating CdS into ZnCr-layered double hydroxide interlayer[J]. RSC Adv., 2015,5(8):5823-5829. doi: 10.1039/C4RA11757C

    20. [20]

      LIN B Z, SUN P, ZHOU Y, JIANG S F, GAO B F, CHEN Y L. Interstratified nanohybrid assembled by alternating cationic layered double hydroxide nanosheets and anionic layered titanate nanosheets with superior photocatalytic activity[J]. J. Hazard. Mater., 2014,280:156-163. doi: 10.1016/j.jhazmat.2014.07.068

    21. [21]

      QIU Y Q, LIN B Z, JIA F C, CHEN Y L, GAO B F, LIU P D. CdS-pillared CoAl-layered double hydroxide nanosheets with superior photocatalytic activity[J]. Mater. Res. Bull., 2015,72:235-240. doi: 10.1016/j.materresbull.2015.07.026

    22. [22]

      ZHANG Y P, LIU H, ZHANG G H, HE L W, LIU P D, LIN B Z. Fabrication and efficient photocatalytic activity of porous CdS-pillared tetratitanate nanohybrid[J]. Mater. Res. Bull., 2014,60:510-515. doi: 10.1016/j.materresbull.2014.09.026

    23. [23]

      TANG M L, AO Y H, WANG P F, WANG C. All-solid-state Z-scheme WO3 nanorod/ZnIn2S4 composite photocatalysts for the effective degradation of nitenpyram under visible light irradiation[J]. J. Hazard. Mater., 2020,387121713. doi: 10.1016/j.jhazmat.2019.121713

    24. [24]

      ZHANG T T, ZHANG S Y, WU C Y, ZUO H, YAN Q. Novel La3+/Sm3+ co-doped Bi5O7I with efficient visible-light photocatalytic activity for advanced treatment of wastewater: Internal mechanism, TC degradation pathway, and toxicity analysis[J]. Chemosphere, 2023,313137540. doi: 10.1016/j.chemosphere.2022.137540

    25. [25]

      HUANG W D, XIAO X Y, LU M L, XIAO Y. In-situ fabrication of novel BiOCl/Bi5O7I 2D/3D heterostructures with enhanced photocatalytic activity[J]. J. Alloy. Compd., 2022,895(2)162669.

    26. [26]

      ZHU Z J, ZHU C M, YANG R Y, YAN L F, HU C Y, LIU B J. Fabrication of 3D Bi5O7I/BiOIO3 heterojunction material with enhanced photocatalytic activity towards tetracycline antibiotics[J]. Separ. Purif. Techn., 2021,265118522. doi: 10.1016/j.seppur.2021.118522

    27. [27]

      ZHAO Q, GUO Z N, LI S Y, WANG J L, LI Z P, JIA Z F, WANG K W, GUO Y. Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties[J]. Chinese J. Inorg. Chem., 2024,40(5):885-894.  

    28. [28]

      WU L X, HU J, SUN C, JIAO F P. Construction of Z-scheme CoAl-LDH/Bi2MoO6 heterojunction for enhanced photocatalytic degradation of antibiotics in natural water bodies[J]. Process Saf. Environ. Protect., 2022,168:1109-1119. doi: 10.1016/j.psep.2022.11.002

  • 加载中
    1. [1]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    2. [2]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    3. [3]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    4. [4]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    5. [5]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    6. [6]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    7. [7]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . 氮掺杂显著提升BiOBr光催化还原CO2性能研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    8. [8]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    9. [9]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    10. [10]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    11. [11]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    12. [12]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    13. [13]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    14. [14]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    15. [15]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    16. [16]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    17. [17]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    18. [18]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    19. [19]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    20. [20]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

Metrics
  • PDF Downloads(0)
  • Abstract views(244)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return