Citation: Xia ZHANG, Yushi BAI, Xi CHANG, Han ZHANG, Haoyu ZHANG, Liman PENG, Shushu HUANG. Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255 shu

Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline

  • Corresponding author: Shushu HUANG, hss11@imut.edu.cn
  • Received Date: 5 July 2024
    Revised Date: 29 March 2025

Figures(12)

  • The catalysts of bismuth oxychloride (BiOCl) and polyaniline (PANI) were prepared by in-situ polymerization, resulting in the formation of a type Ⅱ heterojunction photocatalyst (BiOCl/PANI). The catalysts were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), as well as nitrogen adsorption and desorption techniques. The experimental results show that the BiOCl/PANI catalyst has higher photocatalytic activity than both PANI and BiOCl. Under the conditions of RhB mass concentration 50 mg· L-1, the molar ratio of PANI to BiOCl substance was 0.02∶1, and 50 mg·L-1 catalyst, after 150 min photocatalysis, 98.8% of RhB was degraded by BiOCl/PANI, and the rate constant was 0.031 min-1. After four cycles, the degradation rate of RhB decreased from 98.8% to 98.4%, showing good stability and reusability. The photocatalyst BiOCl/ PANI realizes the rapid separation of electrons and holes, reduces the recombination rate of the two in the catalyst, and improves the photocatalytic performance.
  • 加载中
    1. [1]

      LI Y Y, CAO P, WANG S A, XU X L. Research on the treatment mechanism of anthraquinone dye wastewater by algal-bacterial symbi-otic system[J]. Bioresour. Technol., 2022,347126691. doi: 10.1016/j.biortech.2022.126691

    2. [2]

      SONG Y L, WANG L J, QIANG X, GU W H, MA Z L, WANG G C. An overview of biological mechanisms and strategies for treating wastewater from printing and dyeing processes[J]. J. Water Process Eng., 2023,55104242. doi: 10.1016/j.jwpe.2023.104242

    3. [3]

      YANG Q, LI R J, WEI S Q, YANG R. Schottky functionalized Z-scheme heterojunction photocatalyst Ti2C3/g-C3N4/BiOCl: Efficient photocatalytic H2O2 production via two-channel pathway[J]. Appl. Surf. Sci., 2022,572151525. doi: 10.1016/j.apsusc.2021.151525

    4. [4]

      LI K, TANG Y P, XU Y L, WANG Y L, HUO Y N, LI H X, JIA J P. A BiOCl film synthesis from Bi2O3 film and its UV and visible light pho-tocatalytic activity[J]. Appl. Catal B-Environ., 2013,140/141:179-188. doi: 10.1016/j.apcatb.2013.04.005

    5. [5]

      YAN Y X, YANG H, Yi Z, XIAN T. NaBH4-reduction induced evolu-tion of Bi nanoparticles from BiOCl nanoplates and construction of promising Bi@BiOCl hybrid photocatalysts[J]. Catalysts, 2019,9(10)795. doi: 10.3390/catal9100795

    6. [6]

      XU Z, ZHANG C, ZHANG Y, GU Y Y, AN Y R. BiOCl-based photo-catalysts: Synthesis methods, structure, property, application, and per-spective[J]. Inorg. Chem. Commun., 2022,138109277. doi: 10.1016/j.inoche.2022.109277

    7. [7]

      XIONG D Z, ZHAO W, Guo J J, LI S B, YE Y, LEI E, YANG X F. Highly efficient and reusable BiOCl photocatalyst modulating by hydrogel immobilization and oxygen vacancies engineering[J]. Sep. Purif. Technol., 2021,277119628. doi: 10.1016/j.seppur.2021.119628

    8. [8]

      SANCHEZ-RODRIGUEZ D, MENDEZ MEDRANO M G, REMITA H, ESCOBAR-BARRIOS V. Photocatalytic properties of BiOCl-TiO2 composites for phenol photodegradation[J]. J. Environ., 2018,6(2):1601-1612.

    9. [9]

      JIA Z H, Lv R, GUO L J, ZHANG J D, LI R, LIU J X, FAN C M. Rap-id degradation of ciprofloxacin over BiOCl: Insight into the molecular structure transformation and antibacterial activity elimination[J]. Sep. Purif. Technol., 2021,257117872. doi: 10.1016/j.seppur.2020.117872

    10. [10]

      MOOSAVIAN M A, MOAZEZI N. Removal of cadmium and zinc ions from industrial wastewater using nanocomposites of PANI/ZnO and PANI/CoHCF: A comparative study[J]. Desalin. Water Treat., 2016,57(44):20817-20836. doi: 10.1080/19443994.2015.1110717

    11. [11]

      TURKTEN N, KARATAS Y, BEKBOLET M. Preparation of PANI modified ZnO composites via different methods: Structural, morpho-logical and photocatalytic properties[J]. Water, 2021,13(8)1025. doi: 10.3390/w13081025

    12. [12]

      DENG Y C, XU M Y, JIANG X Y, WANG J T, TREMBLAY P L, ZHANG T A. Versatile iodine-doped BiOCl with abundant oxygen vacancies and (110) crystal planes for enhanced pollutant photodeg-radation[J]. Environ. Res., 2023,216114808. doi: 10.1016/j.envres.2022.114808

    13. [13]

      CUI J, TAO S S, YANG X L, YU X J, SUN S D, YANG Q, WEI W, LIANG S H. Facile construction of nickel-doped hierarchical BiOCl architectures for enhanced visible-light-driven photocatalytic activi-ties[J]. Mater. Res. Bull., 2021,138111208. doi: 10.1016/j.materresbull.2021.111208

    14. [14]

      BAO S, LIANG H, Li C P, BAI J. The synthesis and enhanced photo-catalytic activity of heterostructure BiOCl/TiO2 nanofibers composite for tetracycline degradation in visible light[J]. J. Dispersion Sci. Technol., 2021,42(13):2000-2013. doi: 10.1080/01932691.2020.1795669

    15. [15]

      ADENUGA D O, TICHAPONDWA S M, CHIRWA E M N. Facile synthesis of a Ag/AgCl/BiOCl composite photocatalyst for visible light driven pollutant removal[J]. J. Photochem. Photobiol. A-Chem., 2020,401112747. doi: 10.1016/j.jphotochem.2020.112747

    16. [16]

      ZHANG H Y, GUO J W, GONG J R, XIN X, LI H W, YANG J M, HUANG S S. Study on the electronic structure modulation and photo-catalytic performance of bismuth oxychloride photocatalysts[J]. Journal of Molecular Catalysis (China), 2022,36(5):433-445.

    17. [17]

      QU X F, ZHAO X H, LIU M H, GAO Z Q, YANG D L, SHI L, TANG Y B, SONG H B. BiOCl/TiO2 composite photocatalysts syn-thesized by the solgel method for enhanced visible-light catalytic activity toward methyl orange[J]. J. Mater., 2020,35(22):3067-3078.

    18. [18]

      HAO X Y, GONG J Y, REN L Z, ZHANG D G, XIAO X, JIANG Y X, ZHANG F, TONG Z W. Preparation of polyaniline modified BiOBr with enhanced photocatalytic activities[J]. Funct. Mater. Lett., 2017,10(4)1750040. doi: 10.1142/S1793604717500400

    19. [19]

      HUANG S S, ZHANG J, QIN Y X, SONG F Y, DU C F, SU Y G. Direct Z-scheme SnO 2/Bi2Sn2O7 photocatalyst for antibiotics removal: Insight on the enhanced photocatalytic performance and promoted charge separation mechanism[J]. J. Photochem. Photobiol. A-Chem., 2021,404112947. doi: 10.1016/j.jphotochem.2020.112947

    20. [20]

      WANG H T, JIANG X Y, Qi Y, DU J P, GUO T Y. Engineering bandgap structure of BiOCl nanoplates with oxygen vacancies for accelerated photocatalytic degradation of rhodamine B[J]. J. Alloy. Compd., 2022,910164860. doi: 10.1016/j.jallcom.2022.164860

    21. [21]

      WANG L S, YIN H S, WANG S, WANG J. Ni2+-assisted catalytic one-step synthesis of Bi/BiOCl/Bi2O2CO3 heterojunction with enhanced photocatalytic activity under visible light[J]. Appl. Catal. B-Environ., 2022,305121039. doi: 10.1016/j.apcatb.2021.121039

    22. [22]

      HONG X D, LI Y, WANG X, LONG J P, LIANG B. Carbon nanosheet/MnO 2/BiOCl ternary composite for degradation of organic pollutants[J]. J. Alloy. Compd., 2021,891162090.

    23. [23]

      HUANG W D, XIAO X Y, LU M L, XIAO Y. In-situ fabrication of novel BiOCl/Bi 5O7I 2D/3D heterostructures with enhanced photocat-alytic activity[J]. J. Alloy. Compd., 2022,895162669. doi: 10.1016/j.jallcom.2021.162669

    24. [24]

      LONG Z Q, WANG H L, HUANG K W, ZHANG G M, XIE H J. Di-functional Cu2+-doped BiOCl photocatalyst for degradation of organic pollutant and inhibition of cyanobacterial growth[J]. J. Hazard. Mater., 2022,424127554. doi: 10.1016/j.jhazmat.2021.127554

    25. [25]

      WANG Q Z, HUI J, Li J J, CAI Y X, YIN S Q, WANG F P, SU B T. Photodegradation of methyl orange with PANI-modified BiOCl photo-catalyst under visible light irradiation[J]. Appl. Surf. Sci., 2013,283:577-583. doi: 10.1016/j.apsusc.2013.06.149

    26. [26]

      DING L Y, WEI R J, CHEN H, HU J C, LI J L. Controllable synthe-sis of highly active BiOCl hierarchical microsphere self-assembled by nanosheets with tunable thickness[J]. Appl. Catal. B-Environ., 2015,172(172/173):91-99.

    27. [27]

      LI J J, LU T Y, ZHAO Z W, XU R, LI Y, HUANG Y, YANG C Y, ZHANG S, TANG Y P. Preparation of heterostructured ternary Cd/CdS/BiOCl photocatalysts for enhanced visible-light photocatalytic degradation of organic pollutants in wastewater[J]. Inorg. Chem. Commun., 2020,121108236. doi: 10.1016/j.inoche.2020.108236

    28. [28]

      HARIT A K, GUPTA S, WOO H Y, CHANDRA V. Enhanced photo-catalytic degradation of rhodamine B over Ag3PO4/polyaniline/NiFe 2O4 nanocomposite under solar light irradiation[J]. Inorg. Chem. Commun., 2021,134109010. doi: 10.1016/j.inoche.2021.109010

    29. [29]

      JIANG L C, LI W X, GAO Z X, LU Y H, LUO R T, LIU X J, GUAN G M. Preparation of PANI/BiOI/g-C3N4 composites and their visible light catalytic properties[J]. Synthetic Materials Aging and Applica-tion, 2019,49(6):84-87.

  • 加载中
    1. [1]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    2. [2]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    3. [3]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    4. [4]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    5. [5]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    6. [6]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    7. [7]

      Jingzhuo Tian Chaohong Guan Haobin Hu Enzhou Liu Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068

    8. [8]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    9. [9]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    10. [10]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    14. [14]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    15. [15]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    16. [16]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    19. [19]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    20. [20]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

Metrics
  • PDF Downloads(0)
  • Abstract views(147)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return