Citation: Fei ZHOU, Xiaolin JIA. Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236 shu

Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene

  • Corresponding author: Fei ZHOU, 422826571@qq.com
  • Received Date: 24 June 2024
    Revised Date: 8 October 2024

Figures(6)

  • TiO2 nanobelts and Co3O4/TiO2 catalytic materials were prepared using the hydrothermal method. The catalyst was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray electron spectroscopy, and fluorescence spectroscopy. At room temperature, with a relative humidity of 50.0%, the total gas flow rate of 1.0 L·min-1, the space velocity of 1.05×104 h-1, and toluene volume concentration of 25.0 μL·L-1, two 6 W vacuum ultraviolet lamps were used as light sources to catalyze, degrade, and mineralize toluene. The results show that the prepared catalyst is in the shape of nano-ribbons. The loading of Co3O4 inhibits the recombination of photogenerated electrons and holes and can effectively improve the catalytic performance. The Co3O4/TiO2 with a load of 6.0% Co3O4 has the best catalytic effect. When N2 was used as a carrier gas, the degradation rate of toluene was only 34.7%. The toluene degradation is mainly due to the photolysis of vacuum ultraviolet light. When air was used as a carrier gas, O3 was produced. The Co3O4/TiO2 with a load of 6.0% and vacuum ultraviolet synergistically promote toluene degradation. The highest degradation rate of toluene was 91.7% and the mineralization rate was 74.6%. The degradation rate of toluene was 2.6 times that of nitrogen as a carrier gas.
  • 加载中
    1. [1]

      LI S H, LI X Q, HU F T, ZHANG C, YAN X H. Catalytic oxidation of toluene with low loading bimetallic Au@Pt core-shell catalyst[J]. Chinese J. Inorg. Chem., 2019,35(3):553-562.

    2. [2]

      Chen G Y, Wang Z, Lin F W, Zhang Z M, Yu H D, Yan B B, Wang Z H. Comparative investigation on catalytic ozonation of VOCs in different types over supported MnOx catalysts[J]. J. Hazard. Mater., 2020,391122218. doi: 10.1016/j.jhazmat.2020.122218

    3. [3]

      Wang D S, Zhu X M, Yang X F, Jiao R Y, Zhao S, Song R N, Lü M H, Yang M. VOCs and odors control and development in pharmaceutical fermentation industry[J]. Environ. Sci., 2019,40:1990-1998.

    4. [4]

      OU R, LIU M T, LU Y T, WANG X Y, YUAN A H, LI L L, YANG F. Improved catalytic abatement efficiency of VOCs via creating efficient synergy of dispersed Cu-Co oxides in molecular sieve[J]. Chinese J. Inorg. Chem., 2021,37(7):1322-1336.  

    5. [5]

      LIU J, XIA Y S, BAO D C, ZENG L. Mesoporous Cr2O3 with high surface area: Preparation and catalytic activity performance for toluene combustion[J]. Chinese J. Inorg. Chem., 2014,30(2):353-358.

    6. [6]

      Liang S M, Shu Y J, Li K, Jian J, Huang H B, Deng J G, Leung D Y C, Wu M Y, Zhang Y G. Mechanistic insights into toluene degradation under VUV irradiation coupled with photocatalytic oxidation[J]. J. Hazard. Mater., 2020,399122967. doi: 10.1016/j.jhazmat.2020.122967

    7. [7]

      Huang H B, Huang H L, Zhang L, Hu P, Xu Y, Ye X G, Liang X S, Chen J D, Ji M Y. Photooxidation of gaseous benzene by 185 nm VUV irradiation[J]. Environ. Eng. Sci., 2014,31:481-486. doi: 10.1089/ees.2014.0100

    8. [8]

      Huang H B, Huang H L, Feng Q Y, Liu G Y, Zhan Y J, Wu M Y, Lu H X, Shu Y J, Leung D Y C. Catalytic oxidation of benzene over Mn modified TiO2/ZSM-5 under vacuum UV irradiation[J]. Appl. Catal. B-Environ. Energy, 2017,203:870-878. doi: 10.1016/j.apcatb.2016.10.083

    9. [9]

      Yuan J, Huang X, Chen M X, Shi J W, Shangguan W F. Ozone-assisted photocatalytic degradation of gaseous acetaldehyde on TiO2/M-ZSM-5 (M=Zn, Cu, Mn)[J]. Catal. Today, 2013,201:182-188. doi: 10.1016/j.cattod.2012.06.003

    10. [10]

      CHEN D B, DING J Y, ZHANG G L, FAN L, SUN L, CHENG F, LIU Y L, CHEN Y K, XU Q. Manganese supported nitrogen-doped graphene and performance of catalytic decomposition high-humidity ozone[J]. Chinese J. Inorg. Chem., 2022,38(10):2072-2082. doi: 10.11862/CJIC.2022.203

    11. [11]

      Zhang J J, Hu Y J, Zheng H, Zhang P Y. Hierarchical Z-scheme 1D/2D architecture with TiO2 nanowires decorated by MnO2 nanosheets for efficient adsorption and full spectrum photocatalytic degradation of organic pollutants[J]. Catal Sci Technol., 2020,10:3603-3612. doi: 10.1039/D0CY00419G

    12. [12]

      LIU F Q, WANG L M, FAN D, XU L H, PAN H. Preparation and photocatalytic properties of TiO2/Cu2O/Pt composite hollow microspheres[J]. Chinese J. Inorg. Chem., 2023,39(2):300-308.

    13. [13]

      Zhang Z Q, Bai L L, Li Z J, Qu Y, Jing L Q. Review of strategies for the fabrication of heterojunctional nanocomposites as efficient visible-light catalysts by modulating excited electrons with appropriate thermodynamic energy[J]. J. Mater. Chem. A, 2019,7:10879-10897. doi: 10.1039/C9TA02373A

    14. [14]

      Chen D J, Cheng Y L, Zhou N, Chen P, Wang Y P, Li K, Huo S H, Cheng P F, Peng P, Zhang R C, Wang L, Liu H, Liu Y H, Ruan R. Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review[J]. J. Clean. Prod., 2020,268121725. doi: 10.1016/j.jclepro.2020.121725

    15. [15]

      Zhao X R, Cao Y Q, Chen J, Zhu L, Qian X, Li A D, Wu D. Photocatalytic properties of Co3O4-coated TiO2 powders prepared by plasma-enhanced atomic layer deposition[J]. Nano. Res. Lett., 2017,12497. doi: 10.1186/s11671-017-2269-4

    16. [16]

      Liu J, Ke J, Li Y, Liu B J, Wang L D, Xiao H N, Wang S B. Co3O4 quantum dots/TiO2 nanobelt hybrids for highly efficient photocatalytic overall water splitting[J]. Appl. Catal. B-Environ., 2018,236:396-403. doi: 10.1016/j.apcatb.2018.05.042

    17. [17]

      Huang B, Yang W J, Wen Y W, Shan B, Chen R. Co3O4-modified TiO2 nanotube arrays via atomic layer deposition for improved visible-light photoelectrochemical performance[J]. ACS Appl. Mater. Interfaces, 2015,7:422-431. doi: 10.1021/am506392y

    18. [18]

      Bala S, Mondal I, Goswami A, Pal U, Mondal R. Co-MOF as a sacrificial template: Manifesting a new Co3O4/TiO2 system with a p-n heterojunction for photocatalytic hydrogen evolution[J]. J. Mater. Chem. A, 2015,3:20288-20296. doi: 10.1039/C5TA05210F

    19. [19]

      Shi Z K, Lan L, Li Y Z, Yang Y, Zhang Q, Wu J C, Zhang G Q, Zhao X J. Co3O4/TiO2 nanocomposite formation leads to a tremendous improvement in UV-Vis-IR driven thermocatalytic activity due to novel photoactivation and photocatalysis-thermocatalysis synergetic effect[J]. ACS Sustain. Chem. Eng., 2018,6:16503-16514. doi: 10.1021/acssuschemeng.8b03602

    20. [20]

      Dai J, Yang J, Wang X H, Zhang L, Li Y J. Enhanced visible-light photocatalytic activity for selective oxidation of amines into imines over TiO2(B)/anatase mixed-phase nanowires[J]. Appl. Surf. Sci., 2015,349:343-352. doi: 10.1016/j.apsusc.2015.04.232

    21. [21]

      Yu B, Meng F M, Khan M W, Qin R, Liu X B. Synthesis of hollow TiO2@g-C3N4/Co3O4 core-shell microspheres for effective photooxidation degradation of tetracycline and MO[J]. Ceram. Int., 2020,46:13133-13143. doi: 10.1016/j.ceramint.2020.02.087

    22. [22]

      Liu J, Li Y, Ke J, Wang S B, Wang L D, Xiao H N. Black NiO-TiO2 nanorods for solar photocatalysis: Recognition of electronic structure and reaction mechanism[J]. Appl. Catal. B-Environ., 2018,224:705-714. doi: 10.1016/j.apcatb.2017.11.028

    23. [23]

      Wang Y, Li H H, Wang S K, Wa ng, X , He Z, Hu J J. Investigation of sulphated CuCl2/TiO2 catalyst for simultaneous removal of Hg0 and NO in SCR process[J]. Fuel Process. Technol., 2019,188:179-189. doi: 10.1016/j.fuproc.2019.02.009

    24. [24]

      Wu Z B, Sheng Z Y, Liu Y, Wang H Q, Mo J S. Deactivation mechanism of PtOx/TiO2 photocatalyst towards the oxidation of NO in gas phase[J]. J. Hazard. Mater., 2011,185:1053-1058. doi: 10.1016/j.jhazmat.2010.10.013

    25. [25]

      Guo Y, Dai Y X, Zhao W, Li H, Xu B, Sun C. Highly efficient photocatalytic degradation of naphthalene by Co3O4/Bi2O2CO3 under visible light: A novel p-n heterojunction nanocomposite with nanocrystals/lotus-leaf-like nanosheets structure[J]. Appl. Catal. B-Environ., 2018,237:273-287. doi: 10.1016/j.apcatb.2018.05.089

    26. [26]

      Wang Y T, Zhu C Z, Zuo G C, Guo Y, Xiao W, Dai Y X, Kong J J, Xu X M, Zhou Y X, Xie A M, Sun C, Xian Q M. 0D/2D Co3O4/TiO2 Z-Scheme heterojunction for boosted photocatalytic degradation and mechanism investigation[J]. Appl. Catal. B-Environ., 2020,278119298. doi: 10.1016/j.apcatb.2020.119298

    27. [27]

      Wang J K, Gao R, Zhou D, Chen Z J, Wu Z H, Schumacher G, Hu Z B, Liu X F. Boosting the electrocatalytic activity of Co3O4 nanosheets for a Li-O2 battery through modulating inner oxygen vacancy and exterior Co3+/Co2+ ratio[J]. ACS Catal., 2017,7:6533-6541. doi: 10.1021/acscatal.7b02313

    28. [28]

      Wu M Y, Zhang Y G, Szeto W, Pan W D, Huang H B, Leung D Y C. Vacuum ultraviolet (VUV)-based photocatalytic oxidation for toluene degradation over pure CeO2[J]. Chem. Eng. Sci., 2019,200:203-213. doi: 10.1016/j.ces.2019.01.056

    29. [29]

      Zoschke K, Börnick H, Worch E. Vacuum-UV radiation at 185 nm in water treatment-a review[J]. Water Res., 2014,52:131-145. doi: 10.1016/j.watres.2013.12.034

    30. [30]

      Li M K, Qiang Z M, Pulgarin C, Kiwi J. Accelerated methylene blue (MB) degradation by Fenton reagent exposed to UV or VUV/UV light in an innovative micro photo-reactor[J]. Appl. Catal. B-Environ., 2016,187:83-89. doi: 10.1016/j.apcatb.2016.01.014

    31. [31]

      Hashem T, Zirlewagen M, Braun A. Simultaneous photochemical generation of ozone in the gas phase and photolysis of aqueous reaction systems using one VUV light source[J]. Water Sci. Technol., 1997,35(4):41-48. doi: 10.2166/wst.1997.0081

    32. [32]

      Shu Y J, Xu Y, Huang H B, Ji J, Liang S M, Wu M Y, Leung D Y C. Catalytic oxidation of VOCs over Mn/TiO2/activated carbon under 185 nm VUV irradiation[J]. Chemosphere, 2018,208:550-558. doi: 10.1016/j.chemosphere.2018.06.011

    33. [33]

      Liu Y, Yang W J, Zhang P Y, Zhang J Y. Nitric acid-treated birnessite-type MnO2: An efficient and hydrophobic material for humid ozone decomposition[J]. Appl. Surf. Sci., 2018,442:640-649. doi: 10.1016/j.apsusc.2018.02.204

    34. [34]

      Suzuki H, Araki S, Yamamoto H. Evaluation of advanced oxidation processes (AOP) using O3, UV, and TiO2 for the degradation of phenol in water[J]. J. Water Process. Eng., 2015,7:54-60. doi: 10.1016/j.jwpe.2015.04.011

    35. [35]

      Liu Y, Zhang P Y. Catalytic decomposition of gaseous ozone over todorokite-type manganese dioxides at room temperature: Effects of cerium modification[J]. Appl. Catal. A-Gen., 2017,530:102-110. doi: 10.1016/j.apcata.2016.11.028

    36. [36]

      Ochiai T, Masuko K, Tago S, Nakano R, Niitsu Y, Kobayashi G, Horio K, Nakata K, Murakami T, Hara M, Nojima Y, Kurano M, Serizawa I, Suzuki T, Ikekita M, Morito Y, Fujishima A. Development of a hybrid environmental purification unit by using of excimer VUV lamps with TiO2 coated titanium mesh filter[J]. Chem. Eng. J., 2013,218:327-332. doi: 10.1016/j.cej.2012.12.048

  • 加载中
    1. [1]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    2. [2]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    3. [3]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    4. [4]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    5. [5]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Tianyao HeGan LiXiaoqiang XieDong HanYunyue LengQiuli ZhangWenming LiuGuobo LiHongxiang ZhangShan HuangTing HuangHonggen Peng . Design of highly active meso-zeolite enveloping Pt–Ni bimetallic catalysts for degradation of toluene. Chinese Chemical Letters, 2025, 36(4): 110137-. doi: 10.1016/j.cclet.2024.110137

    9. [9]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    10. [10]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    11. [11]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332

    12. [12]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    13. [13]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    14. [14]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    15. [15]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    16. [16]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    17. [17]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    18. [18]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    19. [19]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

    20. [20]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

Metrics
  • PDF Downloads(0)
  • Abstract views(200)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return