Citation: Peipei CUI, Xin LI, Yilin CHEN, Zhilin CHENG, Feiyan GAO, Xu GUO, Wenning YAN, Yuchen DENG. Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234 shu

Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property

Figures(8)

  • Under solvothermal conditions, six new coordination polymers (CPs) [Mn(L) (phen) (H2O)]n (1), [Co(L) (phen)(H2O)]n (2), [Cu(L)(phen)(H2O)]n (3), [Zn2(L)2(phen)2(H2O)]n (4), [Zn(L)(phen)]n (5), and [Cd(L)(phen)2]n (6) were synthesized by reactions of dicarboxylate ligand 2, 2'-(1, 2-phenylenebis(methylene))bis(sulfanediyl)dinobutyric acid (H2L) and 1, 10-phenanthroline (phen) with the corresponding metal salts. Complexes 1-6 have been structurally characterized by single-crystal X-ray diffraction analyses, elemental analysis, IR, thermogravimetric analysis, and powder X-ray diffraction. The structures of 1-6 are 1D chains, which are further connected by hydrogen bonding interactions to form 3D supramolecular structures. Among them, 1 and 2 are isomorphic with L2- of syn-conformation, while L2- shows anti-conformation in 3-6. In addition, the solid-state photoluminescence property of 4-6 was investigated.
  • 加载中
    1. [1]

      Notash B, Rodbari M F, Gallo G, Dinnebier R. Humidity-induced structural transformation in pseudopolymorph coordination polymers[J]. Inorg. Chem., 2021,60(12):9212-9223. doi: 10.1021/acs.inorgchem.1c01360

    2. [2]

      Jin M, Ando R, Ito H. Distinct fold-mode formation of crystalline Cu(Ⅰ) helical coordination polymers with alternation of the solid-state emission using shape of the counter anions[J]. Inorg. Chem., 2022,61(1):3-9. doi: 10.1021/acs.inorgchem.1c02725

    3. [3]

      Thomas B, Chang B S, Chang J J, Thuo M, Rossini A J. Solid-state nuclear magnetic resonance spectroscopy-assisted structure determination of coordination polymers[J]. Chem. Mater., 2022,34(17):7678-7691. doi: 10.1021/acs.chemmater.2c00593

    4. [4]

      Deng Y F, Wang Y N, Zhao X H, Zhang Y Z. Desolvation-solvation-induced reversible on-off switching of two memory channels in a cobalt(Ⅱ) coordination polymer: Overlay of spin crossover and structural phase transition[J]. CCS Chem., 2022,4(9):3064-3075. doi: 10.31635/ccschem.021.202101407

    5. [5]

      Hu J X, Zhu H L, Meng Y S, Pang J D, Li N, Liu T, Bu X H. Ligand modified and light switched on/off single-chain magnets of {Fe2Co} coordination polymers via metal-to-metal charge transfer[J]. CCS Chem., 2022,5(4):865-875.

    6. [6]

      Sheng K, Fan L M, Tian X F, Gupta R K, Tung C H, Sun D. Temperature-induced Sn(Ⅱ) supramolecular isomeric frameworks as promising heterogeneous catalysts for cyanosilylation of aldehydes[J]. Sci. China Chem., 2020,63:182-186. doi: 10.1007/s11426-019-9621-x

    7. [7]

      Chakraborty G, Park I H, Medishetty R, Vittal J J. Two-dimensional metal-organic framework materials: Synthesis, structures, properties and applications[J]. Chem. Rev., 2021,121(7):3751-3891. doi: 10.1021/acs.chemrev.0c01049

    8. [8]

      Lippert B, Sanz P J M. Metallatriangles and metallasquares: The diversity behind structurally characterized examples and the crucial role of ligand symmetry[J]. Chem. Soc. Rev., 2011,40(9):4475-4487. doi: 10.1039/c1cs15090a

    9. [9]

      Lin Z J, Lü J, Hong M C, Cao R. Metal-organic frameworks based on flexible ligands (FL-MOFs): Structures and applications[J]. Chem. Soc. Rev., 2014,43(16):5867-5895. doi: 10.1039/C3CS60483G

    10. [10]

      Ji Z Y, Fan Y R, Wu M Y, Hong M C. A flexible microporous framework with temperature-dependent gate-opening behaviours for C2 gases[J]. Chem. Commun., 2021,57(31):3785-3788. doi: 10.1039/D1CC00014D

    11. [11]

      Chen K F, Mousavi S H, Singh R, Snurr R Q, Li G, Webley P A. Gating effect for gas adsorption in microporous materials-mechanisms and applications[J]. Chem. Soc. Rev., 2022,51(3):1139-1166. doi: 10.1039/D1CS00822F

    12. [12]

      Dai F N, Dou J M, He H Y, Zhao X L, Sun D F. Self-assembly of metal-organic supramolecules: From a metallamacrocycle and a metal-organic coordination cage to 1D or 2D coordination polymers based on flexible dicarboxylate ligands[J]. Inorg. Chem., 2010,49(9):4117-4124. doi: 10.1021/ic902178c

    13. [13]

      Zhang M X, Zhou W, Pham T, Forrest K A, Liu W L, He Y B, Wu H, Yildirim T, Chen B L, Space B, Pan Y, Zaworotko M J, Bai J F. Fine tuning of MOF-505 analogues to reduce low-pressure methane uptake and enhance methane working capacity[J]. Angew. Chem. Int. Ed., 2017,56(38):11426-11430. doi: 10.1002/anie.201704974

    14. [14]

      Zhang M X, Forrest K A, Liu P H, Dang R, Cui H H, Qin G P, Pham T, Tang Y F, Wang S. Significantly enhanced carbon dioxide selective adsorption via gradual acylamide truncation in MOFs: Experimental and theoretical research[J]. Inorg. Chem., 2022,61(49):19944-19950. doi: 10.1021/acs.inorgchem.2c03217

    15. [15]

      Patra R, Titi H M, Goldberg I. Coordination polymers of flexible poly-carboxylic acids with metal ions. Ⅳ: Syntheses, structures, and magnetic properties of polymeric networks of 5-(3, 5)-(dicarboxybenzyloxy)isophthalic acid with Cd(Ⅱ), Cu(Ⅱ), Co(Ⅱ) and Mn(Ⅱ) ions[J]. CrystEngComm, 2013,15:2853-2862. doi: 10.1039/c3ce27006h

    16. [16]

      Ma M L, Jia C, Zang S Q. Syntheses, structures, tunable emission and white light emitting Eu3+ and Tb3+ doped lanthanide metal-organic framework materials[J]. Dalton Trans., 2013,42:10579-10586. doi: 10.1039/c3dt50315a

    17. [17]

      Lin Z J, Han L W, Wu D S, Huang Y B, Cao R. Structure versatility of coordination polymers constructed from a semirigid tetracarboxylate ligand: Syntheses, structures, and photoluminescent properties[J]. Cryst. Growth Des., 2013,13(1):255-263. doi: 10.1021/cg301405r

    18. [18]

      Khan S, Frontera A, Matsuda R, Kitagawa S, Mir M H. Topochemical [2+2] cycloaddition in a two-dimensional meta-organic framework via SCSC transformation impacts halogen…halogen interactions[J]. Inorg. Chem., 2022,61(7):3029-3032. doi: 10.1021/acs.inorgchem.2c00128

    19. [19]

      Biedermann F, Schneider H J. Experimental binding energies in supramolecular complexes[J]. Chem. Rev., 2016,116(9):5216-5300. doi: 10.1021/acs.chemrev.5b00583

    20. [20]

      Nößler M, Hunger D, Neuman N I, Reimann M, Reichert F, Winkler M, Klein J, Bens T, Suntrup L, Demeshko S, Stubbe J, Kaupp M, Slageren J, Sarkar B. Fluorinated click-derived tripodal ligands drive spin crossover in both iron(Ⅱ) and cobalt(Ⅱ) complexes[J]. Dalton Trans., 2022,51:10507-10517. doi: 10.1039/D2DT01005D

    21. [21]

      Reek J N H, de Bruin B, Pullen S, Mooibroek T J, Kluwer A M, Caumes X. Transition metal catalysis controlled by hydrogen bonding in the second coordination sphere[J]. Chem. Rev., 2022,122(14):12308-12369. doi: 10.1021/acs.chemrev.1c00862

    22. [22]

      Egorov P A, Grishanov D A, Medvedev A G, Churakov A V, Mikhaylov A A, Ottenbacher R V, Bryliakov K P, Babak M V, Lev O, Prikhodchenko P V. Organoantimony dihydroperoxides: Synthesis, crystal structures, and hydrogen bonding networks[J]. Inorg. Chem., 2023,62(25):9912-9923. doi: 10.1021/acs.inorgchem.3c00929

    23. [23]

      Rams M, Lohmiller T, Böhme M, Jochim A, Foltyn M, Schnegg A, Plass W, Näther C. Weakening the interchain interactions in one dimensional cobalt(Ⅱ) coordination polymers by preventing intermolecular hydrogen bonding[J]. Inorg. Chem., 2023,62(26):10420-10430. doi: 10.1021/acs.inorgchem.3c01324

    24. [24]

      Cui P P, Liu Y, Zhai H G, Zhu J P, Yan W N, Yang Y M. Two copper-organic frameworks constructed from the flexible dicarboxylic ligands[J]. Chin. J. Struct. Chem., 2020,39(2):368-374.

    25. [25]

      CUI P P, SUN Y, ZHA Y, LIU S N, ZHANG M X, CAO J Y, WANG Q, WANG X Q. Synthesis, structural characterization, and fluorescence property of three coordination polymers with dicarboxylate ligands[J]. Chinese J. Inorg. Chem., 2023,39(12):2358-2366. doi: 10.11862/CJIC.2023.191

    26. [26]

      Yang C, Wong W T. Self-assembly of guanidinium hexagonal carboxylate: How many H-bonds and H-bonding pattern between ArCOO- and C(NH2)3?[J]. Chem. Lett., 2004,33(7):856-857. doi: 10.1246/cl.2004.856

    27. [27]

      Yang C, Wong W T, Chen X M, Cui Y D, Yang Y S. Star hexacarboxylate: Synthesis, crystal structure and luminescent properties of its terbium complex[J]. Sci. China Ser. B-Chem., 2003,46(6):558-566. doi: 10.1360/03yb0050

    28. [28]

      Xu L, Wang E B, Peng J, Huang R D. A novel coordination polymer with double chains structure: Hydrothermal syntheses, structures and magnetic properties of [Cu(phen)(H2O)2SO4]n (phen=1, 10-phenanthroline)[J]. Inorg. Chem. Commun., 2003,6(6):740-743. doi: 10.1016/S1387-7003(03)00055-8

    29. [29]

      Kamath A, Mishra D K, Brahman D, Pilet G, Sinha B, Tamang A. Poly[diaquo(1, 10-phenanthroline-κ2N1: N10)(μ2-sulphato-κ2O: O')copper(Ⅱ)]: Hydrothermal synthesis, crystal structure and magnetic properties[J]. RSC Adv., 2016,6:46030-46036. doi: 10.1039/C6RA03493D

    30. [30]

      Burlak P V, Samsonenko D G, Kovalenko K A, Fedin V P. Series of cadmium-organic frameworks based on mixed flexible and rigid ligands: Single-crystal-to-single-crystal transformations, sorption, and luminescence properties[J]. Inorg. Chem., 2023,62(44):18087-18097. doi: 10.1021/acs.inorgchem.3c02277

    31. [31]

      Lin Y Q, Tian X M, Xiong Y, Huang C, Chen D M, Zhu B X. Coordination-driven heterochiral self-assembly: Construction of Cd(Ⅱ) coordination polymers with sorption behaviors for iodine and dyes[J]. Inorg. Chem., 2023,62(49):19887-19897. doi: 10.1021/acs.inorgchem.3c01747

    32. [32]

      Mondal S, Sahoo R, Das M C. pH-stable Zn(Ⅱ) coordination polymer as a multiresponsive turn-on and turn-off fluorescent sensor for aqueous medium detection of Al(Ⅲ) and Cr(Ⅵ) oxo-anions[J]. Inorg. Chem., 2023,62(34):14124-14133. doi: 10.1021/acs.inorgchem.3c02435

  • 加载中
    1. [1]

      Xiaxia LIUXiaofang MALuxia GUOXianda HANSisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269

    2. [2]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    3. [3]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    4. [4]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    5. [5]

      Haiming WuGaya N. AndrewRajini AnumulaZhixun Luo . Corrigendum to 'How ligand coordination and superatomic-states accommodate the structure and property of a metal cluster: Cu4 (dppy)4 Cl2 vs. Cu21 (dppy)10 with altered photoluminescence' [Chin. Chem. Lett. 35 (2024) 108340]. Chinese Chemical Letters, 2024, 35(12): 109912-. doi: 10.1016/j.cclet.2024.109912

    6. [6]

      Tiantian Gong Yanan Chen Shuo Wang Miao Wang Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370

    7. [7]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    8. [8]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    9. [9]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    10. [10]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    11. [11]

      Zhibin RenShan LiXiaoying LiuGuanghao LvLei ChenJingli WangXingyi LiJiaqing Wang . Penetrating efficiency of supramolecular hydrogel eye drops: Electrostatic interaction surpasses ligand-receptor interaction. Chinese Chemical Letters, 2024, 35(11): 109629-. doi: 10.1016/j.cclet.2024.109629

    12. [12]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    13. [13]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    14. [14]

      Yue Mao Zhonghang Chen Tiankai Sun Wenyue Cui Peng Cheng Wei Shi . Luminescent coordination polymers with mixed carboxylate and triazole ligands for rapid detection of chloroprene metabolite. Chinese Journal of Structural Chemistry, 2024, 43(9): 100353-100353. doi: 10.1016/j.cjsc.2024.100353

    15. [15]

      Zhendong LiuSainan LiuBin LiuQi MengMeng YuanChunzheng YangYulong BianPing'an MaJun Lin . Fe(Ⅲ)-juglone nanoscale coordination polymers for cascade chemodynamic therapy through synergistic ferroptosis and apoptosis strategy. Chinese Chemical Letters, 2024, 35(11): 109626-. doi: 10.1016/j.cclet.2024.109626

    16. [16]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    17. [17]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    18. [18]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    19. [19]

      Shuai Liu Wen Wu Peili Zhang Yunxuan Ding Chang Liu Yu Shan Ke Fan Fusheng Li . Mechanistic insights into acidic water oxidation by Mn(2,2′-bipyridine-6,6′-dicarboxylate)-based hydrogen-bonded organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100535-100535. doi: 10.1016/j.cjsc.2025.100535

    20. [20]

      Meng ShanYongmei YuMengli SunShuping YangMengqi WangBo ZhuJunbiao Chang . Bifunctional organocatalyst-catalyzed dynamic kinetic resolution of hemiketals for synthesis of chiral ketals via hydrogen bonding control. Chinese Chemical Letters, 2025, 36(1): 109781-. doi: 10.1016/j.cclet.2024.109781

Metrics
  • PDF Downloads(1)
  • Abstract views(249)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return