Citation: Yuan ZHU, Xiaoda ZHANG, Shasha WANG, Peng WEI, Tao YI. Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232 shu

Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure

Figures(5)

  • To address the lack of systematic studies on heavy metal fluorescent probes in typical buffer solutions, this study developed a Fe3+ and Cu2+ fluorescent probe, DHU-NP-4, based on a naphthalimide fluorophore. Comparative analysis of the probe's performance in various buffer systems revealed that buffers with high organic content are unsuitable for evaluating such probes. Furthermore, the pH of the solvent system was found to significantly influence the probe's behavior. Under highly acidic conditions (pH≥2), DHU-NP-4 exhibited exceptional specificity for Fe3+, while in alkaline conditions, it demonstrated high specificity for Cu2+. Leveraging these properties, the probe enabled the quantitative detection of Fe3+ and Cu2+ in solution.
  • 加载中
    1. [1]

      STEINBRÜCHEL C. Patterning of copper for multilevel metallization: Reactive ion etching and chemical-mechanical polishing[J]. Appl. Surf. Sci., 1995,91(1/2/3/4):139-146.

    2. [2]

      RAMAN C D, KANMANI S. Textile dye degradation using nano zero valent iron: A review[J]. J. Environ. Manage., 2016,177:341-355. doi: 10.1016/j.jenvman.2016.04.034

    3. [3]

      LIU Z L, XIE J Y, DENG Z R, WANG M L, DANG D D, LUO S, WANG Y F, SUN Y J, XIA L Q, DING X Z. Enhancing the insecticidal activity of new Bacillus thuringiensis X023 by copper ions[J]. Microb. Cell Fact., 2020,19(1)195. doi: 10.1186/s12934-020-01452-8

    4. [4]

      RUYTERS S, SALAETS P, OORTS K, SMOLDERS E. Copper toxicity in soils under established vineyards in Europe: A survey[J]. Sci. Total Environ., 2013,443:470-477. doi: 10.1016/j.scitotenv.2012.11.001

    5. [5]

      TAHIR N, ASHRAF A, WAQAR S H B, RAFAE A, KANTAMNENI L, SHEIKH T, KHAN R. Copper deficiency, a rare but correctable cause of pancytopenia: A review of literature[J]. Expert Rev. Hematol., 2022,15(11):999-1008. doi: 10.1080/17474086.2022.2142113

    6. [6]

      BALAMURUGAN K, SCHAFFNER W. Copper homeostasis in eukaryotes: Teetering on a tightrope[J]. Biochim. Biophys. Acta‒Mol. Cell Res., 2006,1763(7):737-746. doi: 10.1016/j.bbamcr.2006.05.001

    7. [7]

      MILNE D B. Copper intake and assessment of copper status[J]. Am. J. Clin. Nutr., 1998,67(5):1041S-1045S. doi: 10.1093/ajcn/67.5.1041S

    8. [8]

      KRASNOVSKAYA O, NAUMOV A, GUK D, GORELKIN P, EROFEEV A, BELOGLAZKINA E, MAJOUGA A. Copper coordination compounds as biologically active agents[J]. Int. J. Mol. Sci., 2020,21(11)3965. doi: 10.3390/ijms21113965

    9. [9]

      HSU C C, SENUSSI N H, FERTRIN K Y, KOWDLEY K V. Iron overload disorders[J]. Hepatol. Commun., 2022,6(8):1842-1854. doi: 10.1002/hep4.2012

    10. [10]

      D'MELLO S R, KINDY M C. Overdosing on iron: Elevated iron and degenerative brain disorders[J]. Exp. Biol. Med., 2020,245(16):1444-1473. doi: 10.1177/1535370220953065

    11. [11]

      ODAI T, TERAUCHI M, SUZUKI R, KATO K, HIROSE A, MIYASAKA N. Severity of subjective forgetfulness is associated with high dietary intake of copper in Japanese senior women: A cross-sectional study[J]. Food Sci. Nutr., 2020,8(8):4422-4431. doi: 10.1002/fsn3.1740

    12. [12]

      DAMERON C T, HARRISON M D. Mechanisms for protection against copper toxicity[J]. Am. J. Clin. Nutr., 1998,67(5):1091S-1097S. doi: 10.1093/ajcn/67.5.1091S

    13. [13]

      SUBRAMANIYAM V, SUBASHCHANDRABOSE S R, THAVAMANI P, CHEN Z L, KRISHNAMURTI G S R, NAIDU R, MEGHARAJ M. Toxicity and bioaccumulation of iron in soil microalgae[J]. J. Appl. Phycol., 2016,28(5):2767-2776. doi: 10.1007/s10811-016-0837-0

    14. [14]

      KIM P, ZHANG C C, THORÖE-BOVELETH S, WEISKIRCHEN S, GAISA N T, BUHL E M, STREMMEL W, MERLE U, WEISKIRCHEN R. Accurate measurement of copper overload in an experimental model of Wilson disease by laser ablation inductively coupled plasma mass spectrometry[J]. Biomedicines, 2020,8(9)356. doi: 10.3390/biomedicines8090356

    15. [15]

      SOLOVYEV N, ALA A, SCHILSKY M, MILLS C, WILLIS K, HARRINGTON C F. Biomedical copper speciation in relation to Wilson's disease using strong anion exchange chromatography coupled to triple quadrupole inductively coupled plasma mass spectrometry[J]. Anal. Chim. Acta, 2020,1098:27-36. doi: 10.1016/j.aca.2019.11.033

    16. [16]

      WEINSTOCK N, UHLEMANN M. Automated determination of copper in undiluted serum by atomic absorption spectroscopy[J]. Clin. Chem., 1981,27(8):1438-1440. doi: 10.1093/clinchem/27.8.1438

    17. [17]

      SOFIKITIS A M, COLIN J L, DESBOEUFS K V, LOSNO R. Iron analysis in atmospheric water samples by atomic absorption spectroscopy (AAS) in water-methanol[J]. Anal. Bioanal. Chem., 2004,378(2):460-464. doi: 10.1007/s00216-003-2282-6

    18. [18]

      DASTANGOO H, MAJIDI M R, HORMOZI M K. Stripping voltammetry on palladized aluminum: A novel sensing platform for trace analysis of copper[J]. Microchem. J., 2023,187108404. doi: 10.1016/j.microc.2023.108404

    19. [19]

      INAUDI P, ABOLLINO O, ARGENZIANO M, MALANDRINO M, GUIOT C, BERTINETTI S, FAVILLI L, GIACOMINO A. Advancements in portable voltammetry: A promising approach for iron speciation analysis[J]. Molecules, 2023,28(21)7404. doi: 10.3390/molecules28217404

    20. [20]

      QUE E L, DOMAILLE D W, CHANG C J. Metals in neurobiology: Probing their chemistry and biology with molecular imaging[J]. Chem. Rev., 2008,108(5):1517-1549. doi: 10.1021/cr078203u

    21. [21]

      WU Z T, GUO Y, JIANG W W, YANG Y Q, WEI P, YI T. Recent process in organic small molecular fluorescent probes for tracking markers of tumor redox balance[J]. Trac‒Trends Anal. Chem., 2024,170117461. doi: 10.1016/j.trac.2023.117461

    22. [22]

      WEN Y, JING N, ZHANG M, HUO F J, LI Z Y, YIN C X. A space-dependent 'enzyme-substrate' type probe based on 'carboxylesterase-amide group' for ultrafast fluorescent imaging orthotopic hepatocellular carcinoma[J]. Adv. Sci., 2023,10(8)2206681. doi: 10.1002/advs.202206681

    23. [23]

      WEN Y, LONG Z Q, HUO F J, YIN C X. Novel strategy for accurate tumor labeling: Endogenous metabolic imaging through metabolic probes[J]. Sci. China Chem., 2022,65(12):2517-2527. doi: 10.1007/s11426-022-1372-y

    24. [24]

      ZHANG Z X, TAN W J, ZHANG R N, GUAN S W, MIAO J, ZHANG M. A dendrimer consisting of a pyrene core and a 9-phenylcarbazole periphery as a multi-functional fluorescent probe for iodide, iron(Ⅲ)and mercury(Ⅱ)[J]. Microchim. Acta, 2019,186(8)586. doi: 10.1007/s00604-019-3661-9

    25. [25]

      SUN S H, HU W T, GAO H F, QI H L, DING L P. Luminescence of ferrocene-modified pyrene derivatives for turn-on sensing of Cu2+ and anions[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 2017,184:30-37. doi: 10.1016/j.saa.2017.04.073

    26. [26]

      QIN Z H, SU W W, LIU P, MA J M, ZHANG Y R, JIAO T F. Facile preparation of a rhodamine B derivative-based fluorescent probe for visual detection of iron ions[J]. ACS Omega, 2021,6(38):25040-25048. doi: 10.1021/acsomega.1c04206

    27. [27]

      GAUTHAMA B U, NARAYANA B, SAROJINI B K, KODLADY S N, SANGAPPA Y, KUDVA A K, RAGHU S V. A versatile rhodamine B-derived fluorescent probe for selective copper(Ⅱ) sensing[J]. Inorg. Chem. Commun., 2022,141109501. doi: 10.1016/j.inoche.2022.109501

    28. [28]

      ARON A T, LOEHR M O, BOGENA J, CHANG C J. An endoperoxide reactivity-based FRET probe for ratiometric fluorescence imaging of labile iron pools in living cells[J]. J. Am. Chem. Soc., 2016,138(43):14338-14346. doi: 10.1021/jacs.6b08016

    29. [29]

      CHEN B X, WANG L L, ZHAO Y F, NI Y, XIN C Q, ZHANG C W, LIU J H, GE J Y, LI L, HUANG W. Photocontrollable fluorogenic probes for visualizing near-membrane copper(Ⅱ) in live cells[J]. RSC Adv., 2017,7(49):31093-31099. doi: 10.1039/C7RA03559D

    30. [30]

      CHEN Y, LONG Z Q, WANG C C, ZHU J J, WANG S S, LIU Y, WEI P, YI T. A lysosome-targeted near-infrared fluorescent probe for cell imaging of Cu2+[J]. Dyes Pigment., 2022,204110472. doi: 10.1016/j.dyepig.2022.110472

    31. [31]

      GOPALA L, CHA Y, LEE M H. Versatile naphthalimides: Their optical and biological behavior and applications from sensing to therapeutic purposes[J]. Dyes Pigment., 2022,201110195. doi: 10.1016/j.dyepig.2022.110195

    32. [32]

      CHEVALIER A. The how and why of naphthalimide/heterocycle-fused hybrid dyes: An overview of the latest developments in the quest for dyes with innovative optical properties[J]. Org. Biomol. Chem., 2023,21(37):7498-7510. doi: 10.1039/D3OB01035J

    33. [33]

      DONG H Q, WEI T B, MA X Q, YANG Q Y, ZHANG Y F, SUN Y J, SHI B B, YAO H, ZHANG Y M, LIN Q. 1, 8-Naphthalimide-based fluorescent chemosensors: Recent advances and perspectives[J]. J. Mater. Chem. C, 2020,8(39):13501-13529. doi: 10.1039/D0TC03681A

    34. [34]

      KAUR G, SINGH I, TANDON N, TANDON R, BHAT A A. 1, 8-Naphthalimide-based chemosensors: A promising strategy for detection of metal ions in environmental and biological systems[J]. ChemistrySelect, 2023,8(44)e202301661. doi: 10.1002/slct.202301661

    35. [35]

      HAN C, SUN S B, JI X, WANG J Y. Recent advances in 1, 8-naphthalimide-based responsive small-molecule fluorescent probes with a modified C4 position for the detection of biomolecules[J]. Trac‒Trends Anal. Chem., 2023,167117242. doi: 10.1016/j.trac.2023.117242

    36. [36]

      SARAVANAN A, SUBASHINI G, SHYAMSIVAPPAN S, SURESH T, KADIRVELU K, BHUVANESH N, NANDHAKUMAR R, MOHAN P S. A selective fluorescence chemosensor: Pyrene motif Schiff base derivative for detection of Cu2+ ions in living cells[J]. J. Photochem. Photobiol. A‒Chem., 2018,364:424-432. doi: 10.1016/j.jphotochem.2018.06.021

    37. [37]

      WEI J H, SUN H, JIANG Y, MIAO B X, HAN X E, ZHAO Y, NI Z H. A novel 1, 8-naphthalimide-based Cu2+ ion fluorescent probe and its bioimaging application[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 2021,261120037. doi: 10.1016/j.saa.2021.120037

    38. [38]

      LI X Y, GUO Y F, XU T T, FANG M, XU Q W, ZHANG F, WU Z Y, LI C, ZHU W J. A highly sensitive naphthalimide-based fluorescent probe for detection of Cu2+ via selective hydrolysis reaction and its application in practical samples[J]. J. Chin. Chem. Soc., 2020,67(6):1070-1077. doi: 10.1002/jccs.201900315

    39. [39]

      DALBERA S, KULOVI S, DALAI S. Pyrene-based Schiff base as selective chemosensor for copper(Ⅱ) and sulfide ions[J]. ChemistrySelect, 2018,3(23):6561-6569. doi: 10.1002/slct.201801205

    40. [40]

      WANG H, CUI J J, FANG X H, ZHANG W B, WANG J J, CHEN S Y, QIAN J H. Fluorescent detection of copper ions with acylhydrazine-based probes: Effects of substitute and its position[J]. Dyes Pigment., 2022,197109954. doi: 10.1016/j.dyepig.2021.109954

    41. [41]

      MENG Z Y, WANG Z L, LIANG Y Y, ZHOU G C, LI X Y, XU X, YANG Y Q, WANG S F. A naphthalimide functionalized chitosan-based fluorescent probe for specific detection and efficient adsorption of Cu2+[J]. Int. J. Biol. Macromol., 2023,239124261. doi: 10.1016/j.ijbiomac.2023.124261

    42. [42]

      PARK S Y, KIM W, PARK S H, HAN J, LEE J, KANG C, LEE M H. An endoplasmic reticulum-selective ratiometric fluorescent probe for imaging a copper pool[J]. Chem. Commun., 2017,53(32):4457-4460. doi: 10.1039/C7CC01430A

    43. [43]

      WANG S C, SHENG Z H, YANG Z G, HU D H, LONG X J, FENG G, LIU Y B, YUAN Z, ZHANG J J, ZHENG H R, ZHANG X J. Activatable small-molecule photoacoustic probes that cross the blood-brain barrier for visualization of copper(Ⅱ) in mice with Alzheimer's disease[J]. Angew. Chem.‒Int. Edit., 2019,58(36):12415-12419. doi: 10.1002/anie.201904047

    44. [44]

      WEI Y J, WANG N N, LI D L, WANG G, HE Y. Study on the fluorescence modulation of benzimidazole through energy transfer and photochromic isomerization in the pillar(5)arene-based supermolecular system[J]. React. Funct. Polym., 2019,144104351. doi: 10.1016/j.reactfunctpolym.2019.104351

    45. [45]

      FRISCH M J, TRUCKS G W, SCHLEGEL H B, SCUSERIA G E, ROBB M A, CHEESEMAN J R, SCALMANI G, BARONE V, PETERSSON G A, NAKATSUJI H, LI X, CARICATO M, MARENICH A V, BLOINO J, JANESKO B G, GOMPERTS R, MENNUCCI B, HRATCHIAN H P, ORTIZ J V, IZMAYLOV A F, SONNENBERG J L, WILLIAMS-YOUNG D, DING F, LIPPARINI F, EGIDI F, GOINGS J, PENG B, PETRONE A, HENDERSON T, RANASINGHE D, ZAKRZEWSKI V G, GAO J, REGA N, ZHENG G, LIANG W, HADA M, EHARA M, TOYOTA K, FUKUDA R, HASEGAWA J, ISHIDA M, NAKAJIMA T, HONDA Y, KITAO O, NAKAI H, VREVEN T, THROSSELL K, MONTGOMERY JR. J A, PERALTA J E, OGLIARO F, BEARPARK M J, HEYD J J, BROTHERS E N, KUDIN K N, STAROVEROV V N, KEITH T A, KOBAYASHI R, NORMAND J, RAGHAVACHARI K, RENDELL A P, BURANT J C, IYENGAR S S, TOMASI J, COSSI M, MILLAM J M, KLENE M, ADAMO C, CAMMI R, OCHTERSKI J W, MARTIN R L, MOROKUMA K, FARKAS O, FORESMAN J B, FOX D J. Gaussian 16, Revision C. 01[CP]. Gaussian, Inc., Wallingford CT, 2016.

    46. [46]

      SAID A I, STANEVA D, ANGELOVA S, GRABCHEV I. A multi-channel rhodamine-pyrazole based chemosensor for sensing ph, Cu2+, CN- and Ba2+ and its function as a digital comparator[J]. J. Photochem. Photobiol. A‒Chem., 2022,433114218. doi: 10.1016/j.jphotochem.2022.114218

  • 加载中
    1. [1]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    2. [2]

      Zhixiao XiongShanni QiuYuyu WangHouna DuanYi XiaoYufang XuWeiping ZhuXuhong Qian . Photocalibrated NO release from the zinc ion fluorescent probe based on naphthalimide and its application in living cells. Chinese Chemical Letters, 2025, 36(4): 110002-. doi: 10.1016/j.cclet.2024.110002

    3. [3]

      Xing TianDi WuWanheng WeiGuifu DaiZhanxian LiBenhua WangMingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912

    4. [4]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    5. [5]

      Xinyu GuoChang LiWenjun DengYi ZhouYan ChenYushuang XuRui Li . Phase engineering and heteroatom incorporation enable defect-rich MoS2 for long life aqueous iron-ion batteries. Chinese Chemical Letters, 2025, 36(3): 109715-. doi: 10.1016/j.cclet.2024.109715

    6. [6]

      Yun WeiLei ZhouWenbin HuLiming YangGuang YangChaoqiang WangHui ShiFei HanYufa FengXuan DingPenghui ShaoXubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172

    7. [7]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    8. [8]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    9. [9]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    10. [10]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    11. [11]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    12. [12]

      Tao LiuXuwei HanXueyi SunWeijie ZhangKe GaoRunan MinYuting TianCaixia Yin . An activated fluorescent probe to monitor NO fluctuation in Parkinson’s disease. Chinese Chemical Letters, 2025, 36(3): 110170-. doi: 10.1016/j.cclet.2024.110170

    13. [13]

      Zheyi LiXiaoyang LiangZitong QiuZimeng LiuSiyu WangYue ZhouNan Li . Ion-interferential cell cycle arrest for melanoma treatment based on magnetocaloric bimetallic-ion sustained release hydrogel. Chinese Chemical Letters, 2024, 35(11): 109592-. doi: 10.1016/j.cclet.2024.109592

    14. [14]

      Yang LiXiaoxu LiuTianyi JiMan ZhangXueru YanMengjie YaoDawei ShengShaodong LiPeipei RenZexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551

    15. [15]

      Linfang WangJing LiuMinghao RenWei Guo . A highly sensitive fluorescent HClO probe for discrimination between cancerous and normal cells/tissues. Chinese Chemical Letters, 2024, 35(6): 108945-. doi: 10.1016/j.cclet.2023.108945

    16. [16]

      Yang LiuLeilei ZhangKaixuan LiuLing-Ling WuHai-Yu Hu . Penicillin G acylase-responsive near-infrared fluorescent probe: Unravelling biofilm regulation and combating bacterial infections. Chinese Chemical Letters, 2024, 35(11): 109759-. doi: 10.1016/j.cclet.2024.109759

    17. [17]

      Huamei ZhangJingjing LiuMingyue LiShida MaXucong ZhouAixia MengWeina HanJin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020

    18. [18]

      Pei HuangWeijie ZhangJunping WangFangjun HuoCaixia Yin . Rapid and specific fluorescent probe visualizes dynamic correlation of Cys and HClO in OGD/R. Chinese Chemical Letters, 2025, 36(1): 109778-. doi: 10.1016/j.cclet.2024.109778

    19. [19]

      Lanyun ZhangWeisi WangYu-Qiang ZhaoRui HuangYuxun LuYing ChenLiping DuanYing Zhou . Mechanism study of the molluscicide candidate PBQ on Pomacea canaliculata using a viscosity-sensitive fluorescent probe. Chinese Chemical Letters, 2025, 36(1): 109798-. doi: 10.1016/j.cclet.2024.109798

    20. [20]

      Fan ZhengRunsha XiaoShuai HuangZhikang ChenChen LaiAnyao BiHeying YaoXueping FengZihua ChenWenbin Zeng . Accurate visualization colorectal cancer by monitoring viscosity variations with a novel mitochondria-targeted fluorescent probe. Chinese Chemical Letters, 2025, 36(2): 109876-. doi: 10.1016/j.cclet.2024.109876

Metrics
  • PDF Downloads(1)
  • Abstract views(261)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return