Citation: Yan XU, Suzhi LI, Yan LI, Lushun FENG, Wentao SUN, Xinxing LI. Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226 shu

Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands

Figures(9)

  • Five cadmium naphthalene-diphosphonates, formulated as [Cd1.5(1,4-ndpaH2)2(4,4′-bpyH)(4,4′-bpy)0.5(H2O)2]2 (1), [Cd(1,4-ndpaH2)(1,4-bib)0.5(H2O)] (2), [Cd(1,4-ndpaH3)2(1,2-dpe)(H2O)]·(1,2-dpe)·7H2O (3), (1,2-bixH)[Cd3(1,4-ndpaH)(1,4-ndpaH2)2(H2O)2] (4), and [Cd(1,4-ndpaH2)(H2O)]·H2O (5), have been synthesized from the self-assembly reactions of 1,4-naphthalenediphosphonic acid (1,4-ndpaH4) with Cd(NO3)2·4H2O by introducing auxiliary ligands with variation of rigidity, such as 4,4′-bipyridine (4,4′-bpy), 1,4-bis(1-imidazolyl)benzene (1,4-bib), 1,2-di(4-pyridyl)ethylene (1,2-dpe), 1,3-di(4-pyridyl)propane (1,3-dpp), and bis(imidazol-1-ylmethyl)benzene (1,2-bix), respectively. Structure resolution by single-crystal X-ray diffraction reveals that compound 1 possesses a layered framework, in which the {Cd3(PO2)2} trimers made up of corner-sharing two {CdO4N2} and one {CdO6} octahedra are connected by phosphonate groups, forming a ribbon, which are cross-linked by 4,4′-bipy ligands, forming a 2D layer. Compound 2 shows a 3D open-framework structure, where chains of corner-sharing {CdO4N} trigonal bipyramids and {PO3C} tetrahedra are cross-linked by 1,4-bib and/or phosphonate groups. A 1D ladder-like chain structure is found in compound 3, where the ladder-like chains made up of corner-sharing {CdO5N} octahedra and {PO3C} tetrahedra are connected by 1,4-ndpaH22-. Both compounds 4 and 5 obtained by the introduction of flexible ligands during the synthesis show a 2D layered structure, which is formed by ligand crosslinking double metal chains. Interestingly, In 4, flexible 1,2-bix was singly protonated, as guest molecules, filled between layer and layer, while flexible ligand 1,3-dpp is absent in 5. Photophysical measurements indicate that compounds 1-5 show ligand-centered emissions.
  • 加载中
    1. [1]

      ZHU Y P, YUAN Z Y, ALSHAREEF H N. New opportunities for functional materials from metal phosphonates[J]. ACS Mater. Lett., 2020,2(6):582-594. doi: 10.1021/acsmaterialslett.0c00095

    2. [2]

      ROM T, AGRAWAL A, SARKAR S, MAHATA P, KUMAR A, PAUL A K. Organoamine templated multifunctional hybrid metal phosphonate frameworks: Promising candidates for tailoring electrochemical behaviors and size-selective efficient heterogeneous Lewis acid catalysis[J]. Inorg. Chem., 2022,61(25):9580-9594. doi: 10.1021/acs.inorgchem.2c00811

    3. [3]

      BAO S S, SHIMIZU G K H, ZHENG L M. Proton conductive metal phosphonate frameworks[J]. Coord. Chem. Rev., 2019,378:577-94. doi: 10.1016/j.ccr.2017.11.029

    4. [4]

      YANG W, TIAN H, LI J, HUI Y, HE X, LI J, DANG S, XIE Z, SUN Z M. Photochromic terbium phosphonates with photomodulated luminescence and metal ion sensitive detection[J]. Chem.-Eur. J., 2016,22:15451-15457. doi: 10.1002/chem.201602779

    5. [5]

      ALI J, KUMAR P, CHANDRASEKHAR V. Lanthanide phosphonates and phosphates in molecular magnetism[J]. Chem.-Asian J., 2024,19e202300812. doi: 10.1002/asia.202300812

    6. [6]

      KRAS E A, ABOZEID S M, EDUARDO W, SPERNYAK J A, MORROW J R. Comparison of phosphonate, hydroxypropyl and carboxylate pendants in Fe(Ⅲ) macrocyclic complexes as MRI contrast agents[J]. J. Inorg. Biochem., 2021,2251115941.  

    7. [7]

      QUE Z N, YE Y X, YANG Y S, XIANG F H, CHEN S M, HUANG J L, LI Y B, LIU C L, XIANG S C, ZHANG Z J. Solvent-assisted modification to enhance proton conductivity and water stability in metal phosphonates[J]. Inorg. Chem., 2020,59(6):3518-3522. doi: 10.1021/acs.inorgchem.9b03754

    8. [8]

      XU Y, LI S Z, LI X X. Synthesis, structures, and luminescent properties of a series of lanthanide carboxylate-phosphonates[J]. Chinese J. Inorg. Chem., 2023,39(10):1950-1958. doi: 10.11862/CJIC.2023.167

    9. [9]

      SALCEDO-ABRAIRA P, BIGLIONE C, VILELA S M F, SVENSSON G E, UREÑA N, SALLES F, TERESA M, WILLHAMMAR P T, TRENS P, VáREZ A, INGE A K, HORCAJADA P. High proton conductivity of a bismuth phosphonate metal-organic framework with unusual topology[J]. Chem. Mater., 2023,35(11):4329-4337. doi: 10.1021/acs.chemmater.3c00387

    10. [10]

      SHEIKH J A, JENA H S, CLEARFIELD A, KONAR S. Phosphonate based high nuclearity magnetic cages[J]. Acc. Chem. Res., 2016,49(6):1093-1103. doi: 10.1021/acs.accounts.5b00531

    11. [11]

      SIEMENSMEYER K, PEEPLES C A, THOLEN P, SCHMITT F J, ÇOŞUT B, HANNA G, YÜCESAN G. Phosphonate metal-organic frameworks: A novel family of semiconductors[J]. Adv. Mater., 2020,322000474. doi: 10.1002/adma.202000474

    12. [12]

      BAI X T, CAO L H, CHEN X Y, CAO X J, MENG W C, YAN K Y. A sodium-based phosphonates metal-organic framework with superprotonic conductivity[J]. Cryst. Growth Des., 2023,23(12):8488-8493. doi: 10.1021/acs.cgd.3c01102

    13. [13]

      XU Y. Copper carboxylate-phosphonates: Syntheses, crystal structures and magnetic properties[J]. Chin. J. Struct. Chem., 2021,40(4):1061-1067.

    14. [14]

      LIU B, LIU J C, SHEN Y, FENG J S, BAO S S, ZHENG L M. Polymorphic layered copper phosphonates: Exfoliation and proton conductivity studies[J]. Dalton Trans., 2019,48:6539-6545. doi: 10.1039/C9DT00970A

    15. [15]

      XU Y, LIU B, LI J, GAO L. A manganese(Ⅱ) coordination polymer constructed from phosphonate ligand: Synthesis, crystal structure and magnetic properties[J]. Chin. J. Struct. Chem., 2021,40(4):306-310.

    16. [16]

      HU H, ZHAI F P, LIU X F, LING Y, CHEN Z X, ZHOU Y M. Hydrothermal syntheses and anion-induced structural transformation of three cadmium phosphonates[J]. J. Solid State Chem., 2018,261:9-15. doi: 10.1016/j.jssc.2018.02.005

    17. [17]

      ZHANG C, SHI H, SUN L, YAN Y, WANG B, LIANG Z, WANG L, LI Y. Water stable metal-organic framework based on phosphono-containing ligand as highly sensitive luminescent sensor toward metal ions[J]. Cryst. Growth Des., 2018,18(12):7683-7689. doi: 10.1021/acs.cgd.8b01535

    18. [18]

      MA C, JIAO C Q, SUN Z G, ZHU Y Y, ZHANG X W, WANG M L, YANG D, ZHAO Z, LI H Y, XING B. Two novel cadmium(Ⅱ) carboxyphosphonates with 3D framework structure: Synthesis, crystal structures, luminescence and molecular recognition properties[J]. RSC Adv., 2015,5:79041-79049. doi: 10.1039/C5RA15663G

    19. [19]

      DU Z Y, LI X L, LIU Q Y, MAO J G. Novel cadmium(Ⅱ) phosphonatophenylsulfonate cluster compounds: Syntheses, structures, and luminescent properties[J]. Cryst. Growth Des., 2007,7(8):1501-1507. doi: 10.1021/cg070280v

    20. [20]

      CHANDRASEKHAR V, SASIKUMAR P, BOOMISHANKAR R. Assembly of tetra, di and mononuclear molecular cadmium phosphonates using 2, 4, 6-triisopropylphenylphosponic acid and ancillary ligands[J]. Dalton Trans., 2008(38):5189-5196. doi: 10.1039/b803256d

    21. [21]

      CAO D K, XIAO J, TONG J W, LI Y Z, ZHENG L M. Metal phosphonates based on bis(benzimidazol-2-ylmethyl)imino methylenephosphonate: From discrete dimer to two-dimensional network containing metallomacrocycles[J]. Inorg. Chem., 2007,46(2):428-436. doi: 10.1021/ic060990a

    22. [22]

      DAI L L, ZHU Y Y, JIAO C Q, SUN Z G, SHI S P, ZHOU W, LI W Z, SUN T, LUO H, MA M X. Syntheses, structures, luminescence and molecular recognition properties of four new cadmium carboxyphosphonates with 2D layered and 3D supramolecular structures[J]. CrystEngComm, 2014,16:5050-5061. doi: 10.1039/C4CE00040D

    23. [23]

      ZHAO Z, YANG D, XING B, MA C, SUN Z G, ZHU Y Y, LI H Y, LI J. Cadmium(Ⅱ) carboxyphosphonates based on mixed ligands: Syntheses, crystal structures and recognition properties toward amino acids[J]. RSC Adv., 2016,6:92175-92185. doi: 10.1039/C6RA20434A

    24. [24]

      WILKE M, BATZDORF L, FISCHER F, RADEMANN K, EMMERLING F. Cadmium phenylphosphonates: Preparation, characterization and in situ investigation[J]. RSC Adv., 2016,6:36011-36019. doi: 10.1039/C6RA01080F

    25. [25]

      XU Y, WANG X, LIU Z W, WANG X Y, GAO W K, CUI L. Pyridinium/imidazolium-triggered modulation of structure and properties of cobalt naphthalene-diphosphates[J]. Chinese J. Inorg. Chem., 2023,39(2):193-201.

    26. [26]

      XU Y, WNG X, WANG X Y, CUI L. Cobalt phosphonates based on 1,4-naphthalenediphosphonic acid: Synthesis, structure and magnetic properties[J]. Chemical Reagents, 2022,44(10):1463-1467.

    27. [27]

      GAO W K, XU Y, LI Y, WANG H W, CHANG J W. Naphthalene bisphosphonate manganese coordination polymer: Synthesis, crystal structure, and magnetic properties[J]. Chemical Reagents, 2024,46(2):61-66.

    28. [28]

      BULUT A, ZORLU Y, WÖRLE M, ÇETINKAYA A C, KURT H, TAM B, YAZAYDIN A, BECKMANN J, YÜCESAN G. Short naphthalene organophosphonate linkers to microporous frameworks[J]. ChemistrySelect, 2017,2:7050-7053. doi: 10.1002/slct.201701411

  • 加载中
    1. [1]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    2. [2]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    3. [3]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    4. [4]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    5. [5]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    6. [6]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    7. [7]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    8. [8]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    9. [9]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    10. [10]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    11. [11]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    12. [12]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    13. [13]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    14. [14]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    15. [15]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    16. [16]

      Xiaxia LIUXiaofang MALuxia GUOXianda HANSisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269

    17. [17]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    18. [18]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    19. [19]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    20. [20]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

Metrics
  • PDF Downloads(0)
  • Abstract views(313)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return