Citation: Aiai WANG, Lu ZHAO, Yunfeng BAI, Feng FENG. Research progress of bimetallic organic framework in tumor diagnosis and treatment[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225 shu

Research progress of bimetallic organic framework in tumor diagnosis and treatment

Figures(5)

  • Bimetallic organic frameworks (BMOFs) are a new type of hybrid materials connected by coordination bonds between two metal ions as nodes and organic ligands. BMOFs have been widely used in catalysis, biomedicine, luminescence sensing, and other fields because of their large surface area, high load capacity, adjustable composition, and aperture. Besides, BMOFs can be used as precursors for synthesizing functional nanomaterials with controlled size, composition, and structure and have exposed active sites, good stability, and electrical conductivity. This review summarizes the latest research progress of BMOFs in tumor monotherapy, combination therapy, and magnetic resonance imaging. Finally, the challenges and future trends of BMOFs in tumor diagnosis and treatment are discussed.
  • 加载中
    1. [1]

      Siegel R L, Giaquinto A N, Jemal A. Cancer statistics, 2024[J]. CA Cancer J. Clin., 2024,74(1):12-49. doi: 10.3322/caac.21820

    2. [2]

      Vasan N, Baselga J, Hyman D M. A view on drug resistance in can-cer[J]. Nature, 2019,575(7782):299-309. doi: 10.1038/s41586-019-1730-1

    3. [3]

      Wang C, Fan W P, Zhang Z J, Wen Y, Xiong L, Chen X Y. Advanced nanotechnology leading the way to multimodal imaging-guided preci-sion surgical therapy[J]. Adv. Mater., 2019,31(49)1904329. doi: 10.1002/adma.201904329

    4. [4]

      Zhong Y Y, Li X S, Chen J H, Wang X X, Wei L T, Fang L Q, Kumar A, Zhuang S Z, Liu J Q. Recent advances in MOF-based nanoplat-forms generating reactive species for chemodynamic therapy[J]. Dalton Trans., 2020,49(32):11045-11058. doi: 10.1039/D0DT01882A

    5. [5]

      Li S L, Jiang P, Jiang F L, Liu Y. Recent advances in nanomaterial-based nanoplatforms for chemodynamic cancer therapy[J]. Adv. Funct., 2021,31(22)2100243. doi: 10.1002/adfm.202100243

    6. [6]

      Xu J T, Wang J, Ye J, Jiao J, Liu Z G, Zhao C J, Li B, Fu Y J. Metal-coordinated supramolecular self-assemblies for cancer theranostics[J]. Adv. Sci., 2021,8(16)2101101. doi: 10.1002/advs.202101101

    7. [7]

      Xie Z J, Fan T J, An J, Choi W, Duo Y H, Ge Y Q, Zhang B, Nie G H, Xie N, Zheng T T, Chen Y, Zhang H, Kim J S. Emerging combination strategies with phototherapy in cancer nanomedicine[J]. Chem. Soc. Rev., 2020,49(22):8065-8087. doi: 10.1039/D0CS00215A

    8. [8]

      Deng X Y, Shao Z W, Zhao Y L. Solutions to the drawbacks of photo-thermal and photodynamic cancer therapy[J]. Adv. Sci., 2021,8(3)2002504. doi: 10.1002/advs.202002504

    9. [9]

      Wan X Y, Song L Q, Pan W, Zhong H, Li N, Tang B. Tumor-targeted cascade nanoreactor based on metal-organic frameworks for synergis-tic ferroptosis-starvation anticancer therapy[J]. ACS Nano, 2020,14(9):11017-11028. doi: 10.1021/acsnano.9b07789

    10. [10]

      Hao M Q, Chen B B, Zhao X Y, Zhao N N, Xu F J. Organic/inorganic nanocomposites for cancer immunotherapy[J]. Mater. Chem. Front., 2020,4(9):2571-2609. doi: 10.1039/D0QM00323A

    11. [11]

      Li Q, Liu Y, Zhang Y R, Jiang W. Immunogenicity-boosted cancer immunotherapy based on nanoscale metal-organic frameworks[J]. J. Control. Release, 2022,347:183-198. doi: 10.1016/j.jconrel.2022.05.003

    12. [12]

      Zhang L H, Ouyang M Z, Zhang Y F, Zhang L Y, Huang Z Y, He L B, Lei Y L, Zou Z, Feng F, Yang R H. The fluorescence imaging and precise suppression of bacterial infections in chronic wounds by porphyrin-based metal-organic framework nanorods[J]. J. Mater. Chem. B, 2021,9(38):8048-8055. doi: 10.1039/D1TB01649K

    13. [13]

      Bai Z Q, Zhao L, Feng H D, Xin Z H, Wang C Y, Liu Z X, Tian M Z, Zhang H F, Bai Y F, Feng F. Aptamer modified Ti3C2 nanosheets application in smart targeted photothermal therapy for cancer[J]. Cancer Nanotechnol., 2023,14(1):2-16. doi: 10.1186/s12645-022-00154-7

    14. [14]

      Bai Z Q, Zhao L, Feng H D, Xu H, Zhang N P, Li Y J, Song J P, Bai Y F, Yang R H, Feng F. Fabricating Aptamer-functionalized Ti3C2 therapeutic nanoplatform for targeted chemo-photothermal therapy of cancer[J]. Mater. Des., 2023,226111656. doi: 10.1016/j.matdes.2023.111656

    15. [15]

      Feng H D, Zhao L, Bai Z Q, Xin Z H, Wang C Y, Liu L Z, Song J P, Zhang H F, Bai Y F, Feng F. Aptamer modified Zr-based porphyrinic nanoscale metal-organic frameworks for active-targeted chemo-photodynamic therapy of tumors[J]. RSC Adv., 2023,13(16):11215-11224. doi: 10.1039/D3RA00753G

    16. [16]

      Chen Y Y, Zhao L, Liu M Q, Chen X L, Zhang L H, Xu H, Chen Z Z, Wang A A, Wang Y Z, Bai Y F, Feng F. Aptamer-functionalized nanoscale metal-organic frameworks for targeted photothermal-chemo combined tumor therapy[J]. ACS Appl. Nano Mater., 2024,7(9):10719-10730. doi: 10.1021/acsanm.4c01144

    17. [17]

      Wang C Y, Xin Z H, Bai Z Q, Mao J X, Li Y J, J ia, Z F, Wang K W, Zhao L, Bai Y F, Feng F. Covalent organic frameworks-based nano-platform with enhanced photothermal and photodynamic perfor-mance for tumor targeted therapy[J]. Mater. Chem. Front., 2024,8(16):2736-2744. doi: 10.1039/D4QM00236A

    18. [18]

      WU Z Q, LIU X Y. Integrated application of metal-organic frame-works in cancer diagnosis and treatment[J]. Applied Chemical Industry, 2022,51(8):2396-2399. doi: 10.3969/j.issn.1671-3206.2022.08.043

    19. [19]

      Furukawa H, Cordova K E, O'Keeffe M, Yaghi O M. The chemistry and applications of metal-organic frameworks[J]. Science, 2013,341(6149)1230444. doi: 10.1126/science.1230444

    20. [20]

      Liu Y, Zhao Y L, Chen X Y. Bioengineering of metal-organic frame-works for nanomedicine[J]. Theranostics, 2019,9(11):3122-3133. doi: 10.7150/thno.31918

    21. [21]

      Yaghi O M, Li H. Hydrothermal synthesis of a metal-organic frame-work containing large rectangular channels[J]. J. Am. Chem. Soc., 1995,117(41):10401-10402. doi: 10.1021/ja00146a033

    22. [22]

      Horcajada P, Serre C, Vallet-Regí M, Sebban M, Taulelle F, Férey G. Metal-organic frameworks as efficient materials for drug delivery[J]. Angew. Chem. Int. Ed., 2006,45(36):5974-5978. doi: 10.1002/anie.200601878

    23. [23]

      WAN S C, XIONG B Q, PAN Y Y, QIU C D, KE F S. Cu-porphyrin based metal organic frameworks for high-performance lithium-sulfur batteries[J]. Chinese J. Inorg. Chem., 2021,37(9):1642-1648.  

    24. [24]

      ZHAO D, LIAO Z T, ZHANG W, CHEN Z Z, SUN W Y. Progress in functional metal-organic frameworks for catalytic conversion of car-bon dioxide[J]. Chinese J. Inorg. Chem., 2021,37(7):1153-1176.  

    25. [25]

      ZHANG X Y, CHEN P, ZHAO Y X, LI X J, YANG S J, YANG Y. Construction and photocatalytic properties of MOF-808/Bi2MoO6 composites[J]. Chinese J. Inorg. Chem., 2023,39(5):805-81.  

    26. [26]

      GONG S P, LIU Y, QIN Y. Synthesis of Co-Cu bimetallic MOF nanosheets and their application in electrocatalytic oxygen evolution reaction[J]. New Chemical Materials, 2024,52(1):247-252.

    27. [27]

      Park K S, Ni Z, Cote A P, Choi J Y, Huang R D, Uribe-Romo F J, Chae H K, O'Keeffe M, Yaghi O M. Exceptional chemical and ther-mal stability of zeolitic imidazolate frameworks[J]. Proc. Natl. Acad. Sci. U. S. A., 2006,103(27):10186-10191. doi: 10.1073/pnas.0602439103

    28. [28]

      Zhang W, Lu J, Gao X N, Li P, Zhang W, Ma Y, Wang H, Tang B. Enhanced photodynamic therapy by reduced levels of intracellular glutathione obtained by employing a nano-MOF with Cu (Ⅱ) as the active center[J]. Angew. Chem. Int. Ed., 2018,57(18):4891-4896. doi: 10.1002/anie.201710800

    29. [29]

      Liu Q, Cong H J, Deng H X. Deciphering the spatial arrangement of metals and correlation to reactivity in multivariate metal-organic frameworks[J]. J. Am. Chem. Soc., 2016,138(42):13822-13825. doi: 10.1021/jacs.6b08724

    30. [30]

      Wang X M, Wang X X, Zhao L, Zhang H Y, Liu M, Zhang C, Liu S X. Self-reconstruction of cationic activated Ni-MOFs enhanced the intrinsic activity of electrocatalytic water oxidation[J]. Org. Chem. Front., 2022,9(1):179-185.

    31. [31]

      Shen K, Zhang L, Chen X D, Liu L M, Zhang D L. Han Y[J]. Chen J Y, Long J L, Luque R, Li Y W, Chen B L. Ordered macro-microporous metal-organic framework single crystals. Science, 2018,359(6372):206-210.

    32. [32]

      Yang J, Yang Y W. Metal-organic frameworks for biomedical appli-cations[J]. Small, 2020,16(10)1906846. doi: 10.1002/smll.201906846

    33. [33]

      Rowe M D, Thamm D H, Kraft S L, Boyes S G. Polymer-modified gadolinium metal-organic framework nanoparticles used as multi-functional nanomedicines for the targeted imaging and treatment of cancer[J]. Biomacromolecules, 2009,10(4):983-993. doi: 10.1021/bm900043e

    34. [34]

      Wang S Z, McGuirk C M, d'Aquino A, Mason J A, Mirkin C A. Metal-organic framework nanoparticles[J]. Adv. Mater., 2018,30(37)1800202. doi: 10.1002/adma.201800202

    35. [35]

      Wu M X, Gao J, Wang F, Yang J, Song N, Jin X, Mi P, Tian J, Luo J, Liang F, Yang Y W. Multistimuli responsive core-shell nanoplatform constructed from Fe3O4@MOF equipped with pillar [6] arene nano-valves[J]. Small, 2018,14(17)1704440. doi: 10.1002/smll.201704440

    36. [36]

      Li Z, Song N, Yang Y W. Stimuli-responsive drug-delivery systems based on supramolecular nanovalves[J]. Matter, 2019,1(2):345-368. doi: 10.1016/j.matt.2019.05.019

    37. [37]

      Lou X Y, Li Y P, Yang Y W. Gated materials: Installing macrocyclic arenes-based supramolecular nanovalves on porous nanomaterials for controlled cargo release[J]. Biotechnol. J., 2019,14(1)1800354. doi: 10.1002/biot.201800354

    38. [38]

      Lu K D, He C B, Guo N N, Chan C, Ni K Y, Lan G X, Tang H D, Pelizzari C, Fu Y X, Spiotto M T, Weichselbaum R R, Lin W B. Low-dose X-ray radiotherapy-radiodynamic therapy via nanoscale metal-organic frameworks enhances checkpoint blockade immunotherapy[J]. Nat. Biomed. Eng., 2018,2(8):600-610. doi: 10.1038/s41551-018-0203-4

    39. [39]

      Chen Y Y, Zhong H, Wang J B, Wan X Y, Li Y H, Pan W, Li N, Tang B. Catalase-like metal-organic framework nanoparticles to enhance radiotherapy in hypoxic cancer and prevent cancer recur-rence[J]. Chem. Sci., 2019,10(22):5773-5778. doi: 10.1039/C9SC00747D

    40. [40]

      Xiong Z S, Yang M Q, Liu P X, Tang Z Y, Yang Y, Zhan M X, Chen T F, Li X L, Lu L G. Designing bimetallic metal-organic framework-based heterojunction radiosensitizer for enhanced radiodynamic ther-apy and immunotherapy[J]. Adv. Funct. Mater., 2023,34(11)2312919.

    41. [41]

      Zhong Y Y, Peng Z X, Peng Y Q, Li B, Pan Y, Ouyang Q, Sakiyama H, Muddassir M, Liu J Q. Construction of Fe-doped ZIF-8/DOX nanocomposites for ferroptosis strategy in the treatment of breast can-cer[J]. J. Mater. Chem. B, 2023,11(27):6335-6345. doi: 10.1039/D3TB00749A

    42. [42]

      Zhao X P, Zhang N, Yang T T, Liu D M, Jing X A, Wang D Q, Yang Z W, Xie Y C, Meng L J. Bimetallic metal-organic frameworks: Enhanced peroxidase-like activities for the self-activated cascade reaction[J]. ACS Appl. Mater. Interfaces, 2021,13(30):36106-36116. doi: 10.1021/acsami.1c05615

    43. [43]

      Han X, Li Y, Zhou Y, Song Z Y, Deng Y L, Qin J L, Jiang Z Q. Metal-organic frameworks-derived bimetallic nanozyme platform enhances cytotoxic effect of photodynamic therapy in hypoxic cancer cells[J]. Mater. Des., 2021,204109646. doi: 10.1016/j.matdes.2021.109646

    44. [44]

      He H Z, Du L H, Guo H L, An Y C, Lu L J, Chen Y L, Wang Y, Zhong H H, Shen J, Wu J, Shuai X T. Redox responsive metal organ-ic framework nanoparticles induces ferroptosis for cancer therapy[J]. Small, 2020,16(33)2001251. doi: 10.1002/smll.202001251

    45. [45]

      Gao Z G, Li Y J, Zhang Y, An P J, Chen F H, Chen J, You C Q, Wang Z F, Sun B W. A CD44-targeted Cu (Ⅱ) delivery 2D nanoplat-form for sensitized disulfiram chemotherapy to triple-negative breast cancer[J]. Nanoscale, 2020,12(15):8139-8146. doi: 10.1039/D0NR00434K

    46. [46]

      Wang Z, Niu J S, Zhao C Q, Wang X H, Ren J S, Qu X G. A bimetal-lic metal-organic framework encapsulated with DNAzyme for intra-cellular drug synthesis and self-sufficient gene therapy[J]. Angew. Chem. Int. Ed., 2021,60(22):12431-12437. doi: 10.1002/anie.202016442

    47. [47]

      Cun J E, Fan X, Pan Q Q, Gao W X, Luo K, He B, Pu Y J. Copper-based metal-organic frameworks for biomedical applications[J]. Adv. Colloid Interface Sci., 2022,305102686. doi: 10.1016/j.cis.2022.102686

    48. [48]

      Yang P P, Tao J, Chen F F, Chen Y Y, He J Q, Shen K, Zhao P, Li Y W. Multienzyme-mimic ultrafine alloyed nanoparticles in metal organic frameworks for enhanced chemodynamic therapy[J]. Small, 2021,17(7)2005865. doi: 10.1002/smll.202005865

    49. [49]

      Liu Y Y, Chen K X, Yang Y P, Shi P F. Glucose oxidase-modified metal-organic framework for starving-enhanced chemodynamic thera-py[J]. ACS Appl. Biol. Mater., 2023,6(2):857-864. doi: 10.1021/acsabm.2c01004

    50. [50]

      Yan K, Zhang Y B, Mu C L, Xu Q N, Jing X A, Wang D Q, Dang D F, Meng L J, Ma J Z. Versatile nanoplatforms with enhanced photo-dynamic therapy: Designs and applications[J]. Theranostics, 2020,10(16):7287-7318. doi: 10.7150/thno.46288

    51. [51]

      Huang L, Zhao S J, Wu J S, Yu L, Singh N, Yang K, Lan M H, Wang P F, Kim J S. Photodynamic therapy for hypoxic tumors: Advances and perspectives[J]. Coord. Chem. Rev., 2021,438213888. doi: 10.1016/j.ccr.2021.213888

    52. [52]

      Wei X, Song M Z, Jiang G R, Liang M, Chen C L, Yang Z Y, Zou L. Progress in advanced nanotherapeutics for enhanced photodynamic immunotherapy of tumor[J]. Theranostics, 2022,12(12):5272-5298. doi: 10.7150/thno.73566

    53. [53]

      Zhang M M, Shen W, Jiang Q Q, Sun Q W, Liu Y, Yang Y, Yin D K. Engineering a curcumol-loaded porphyrinic metal-organic frame-work for enhanced cancer photodynamic therapy[J]. Colloid Surf. B-Biointerfaces, 2022,214112456. doi: 10.1016/j.colsurfb.2022.112456

    54. [54]

      Chen J J, Zhu Y F, Kaskel S. Porphyrin-based metal-organic frame-works for biomedical applications[J]. Angew. Chem. Int. Ed., 2021,60(10):5010-5035. doi: 10.1002/anie.201909880

    55. [55]

      Sun Q W, Yang J M, Shen W, Lu H Y, Hou X H, Liu Y, Xu Y J, Wu Q H, Xuan Z H, Yang Y, Yin D K. Engineering mitochondrial uncou-pler synergistic photodynamic nanoplatform to harness immunostim-ulatory pro-death autophagy/mitophagy[J]. Biomaterials, 2022,289121796. doi: 10.1016/j.biomaterials.2022.121796

    56. [56]

      Li S Y, Xie B R, Cheng H, Li C X, Zhang M K, Qiu W X, Liu W L, Wang X S, Zhang X Z. A biomimetic theranostic O2-meter for cancer targeted photodynamic therapy and phosphorescence imaging[J]. Biomaterials, 2018,151:1-12. doi: 10.1016/j.biomaterials.2017.10.021

    57. [57]

      He M E, Chen Y N, Tao C, Tian Q Q, An L, Lin J M, Tian Q W, Yang H, Yang S P. Mn-porphyrin-based metal-organic framework with high longitudinal relaxivity for magnetic resonance imaging guidance and oxygen self-supplementing photodynamic therapy[J]. ACS Appl. Mater. Interfaces, 2019,11(45):41946-41956. doi: 10.1021/acsami.9b15083

    58. [58]

      Chen Z X, Wu Y F, Yao Z P, Su J, Wang Z, Xia H P, Liu S Q. 2D copper (Ⅱ) metalated metal-organic framework nanocomplexes for dual-enhanced photodynamic therapy and amplified antitumor immunity[J]. ACS Appl. Mater. Interfaces, 2022,14(39):44199-44210. doi: 10.1021/acsami.2c12990

    59. [59]

      Zheng Q Y, Liu X M, Zheng Y F, Yeung K W K, Cui Z D, Liang Y Q, Li Z Y, Zhu S L, Wang X B, Wu S L. The recent progress on metal-organic frameworks for phototherapy[J]. Chem. Soc. Rev., 2021,50(8):5086-5125. doi: 10.1039/D1CS00056J

    60. [60]

      Zhou M J, Liu X, Chen F M, Yang L L, Yuan M J, Fu D Y, Wang W Q, Yu H J. Stimuli-activatable nanomaterials for phototherapy of can-cer[J]. Biomed. Mater., 2021,16(4)042008. doi: 10.1088/1748-605X/abfa6e

    61. [61]

      Yang K, Zhao S J, Li B L, Wang B H, Lan M H, Song X Z. Low tem-perature photothermal therapy: Advances and perspectives[J]. Coord. Chem. Rev., 2022,454214330. doi: 10.1016/j.ccr.2021.214330

    62. [62]

      He H Z, Du L H, Guo H L, An Y C, Lu L J, Chen Y L, Wang Y, Zhong H H, Shen J, Wu J, Shuai X T. Redox responsive metal organic framework nanoparticles induces ferroptosis for cancer therapy[J]. Small, 2020,16(33)2001251. doi: 10.1002/smll.202001251

    63. [63]

      Li A N, Wang N, Song Y X, Sun H F, Cui J W, Zhang G Q, Yu Q. Bimetallic metal-organic frameworks for tumor inhibition via com-bined photothermal-immunotherapy[J]. Chem. Commun., 2022,58(14):2315-2318. doi: 10.1039/D1CC06943H

    64. [64]

      Ren X Y, Han Y X, Xu Y Q, Liu T G, Cui M Y, Xia L L, Li H N, Gu Y Q, Wang P. Diversified strategies based on nanoscale metal-organic frameworks for cancer therapy: The leap from monofunctional to ver-satile[J]. Coord. Chem. Rev., 2021,431213676. doi: 10.1016/j.ccr.2020.213676

    65. [65]

      Liu Y, Lei P F, Liao X W, Wang C. Nanoscale metal-organic frame-works as smart nanocarriers for cancer therapy[J]. J. Nanostruct. Chem., 2022,14(1):1-19.

    66. [66]

      Ding Y, Xu H, Xu C, Tong Z R, Zhang S T, Bai Y, Chen Y N, Xu Q H, Zhou L Z, Ding H, Sun Z Q, Yan S, Mao Z W, Wang W L. A nano-medicine fabricated from gold nanoparticles-decorated metal-organic framework for cascade chemo/chemodynamic cancer therapy[J]. Adv. Sci., 2020,7(17)2001060. doi: 10.1002/advs.202001060

    67. [67]

      Ma Y Y, Su Z, Zhou L M, He L C, Hou Z Y, Zou J H, Cai Y, Chang D, Xie J B, Zhu C, Fan W P, Chen X Y, Ju S H. Biodegradable metal-organic-framework-gated organosilica for tumor-microenvironment-unlocked glutathione-depletion-enhanced synergistic therapy[J]. Adv. Mater., 2022,34(12)2107560. doi: 10.1002/adma.202107560

    68. [68]

      Ding Q J, Xu Z J, Zhou L Y, Rao C Y, Li W M, Muddassir M, Sakiyama H, Li B, Ouyang Q, Liu J Q. A multimodal metal-organic framework based on unsaturated metal site for enhancing antitumor cytotoxicity through chemo-photodynamic therapy[J]. J. Colloid Interface Sci., 2022,621:180-194. doi: 10.1016/j.jcis.2022.04.078

    69. [69]

      Zhang J H, Chang L N, Hao R, Zhang G W, Liu T, Li Z K, Wang T Y, Zeng L Y. Copper/gold-modified porphyrinic metal-organic frame-works nanoprobes for enhanced photodynamic/chemodynamic thera-py[J]. Chem. Eng. J., 2023,474145485. doi: 10.1016/j.cej.2023.145485

    70. [70]

      Xiao Y, Lai F X, Xu M R, Zheng D N, Hu Y, Sun M, Lv N. Dual-functional nanoplatform based on bimetallic metal-organic frame-works for synergistic starvation and chemodynamic therapy[J]. ACS Biomater. Sci. Eng., 2023,9(4):1991-2000. doi: 10.1021/acsbiomaterials.2c01476

    71. [71]

      Zhang K, Meng X D, Cao Y, Yang Z, Dong H F, Zhang Y D, Lu H T, Shi Z J, Zhang X J. Metal-organic framework nanoshuttle for syner-gistic photodynamic and low-temperature photothermal therapy[J]. Adv. Funct. Mater., 2018,28(42)1804634. doi: 10.1002/adfm.201804634

    72. [72]

      Cui R X, Shi J, Liu Z L. Metal-organic framework-encapsulated nanoparticles for synergetic chemo/chemodynamic therapy with tar-geted H2O2 self-supply[J]. Dalton Trans., 2021,50(43):15870-15877. doi: 10.1039/D1DT03110D

    73. [73]

      Ke Q M, Jing P, Wan Y H, Xia T F, Zhang L, Cao X Y, Jiang K. Sul-fonated vitamin K3 mediated bimetallic metal-organic framework for multistage augmented cancer therapy[J]. J. Colloid Interface Sci., 2024,654:224-234. doi: 10.1016/j.jcis.2023.10.016

    74. [74]

      Dong J L, Yu Y Y, Pei Y X, Pei Z C. pH-responsive aminotriazole doped metal organic frameworks nanoplatform enables self-boosting reactive oxygen species generation through regulating the activity of catalase for targeted chemo/chemodynamic combination therapy[J]. J. Colloid Interface Sci., 2022,607:1651-1660. doi: 10.1016/j.jcis.2021.09.043

    75. [75]

      Zhang H, Zhang Q Y, Guo Z Y, Liang K, Boyer C, Liu J, Zheng Z H, Amal R, Yun S L J, Gu Z. Disulfiram-loaded metal organic frame-work for precision cancer treatment via ultrasensitive tumor microen-vironment-responsive copper chelation and radical generation[J]. J. Colloid Interface Sci., 2022,615:517-526. doi: 10.1016/j.jcis.2022.01.187

    76. [76]

      Xu W J, Qian J M, Hou G H, Wang T B, Wang J L, Wang Y P, Yang L J, Cui X K, Suo A L. A hollow amorphous bimetal organic frame-work for synergistic cuproptosis/ferroptosis/apoptosis anticancer ther-apy via disrupting intracellular redox homeostasis and copper/iron metabolisms[J]. Adv. Funct. Mater., 2022,32(40)2205013. doi: 10.1002/adfm.202205013

    77. [77]

      Akbar M U, Khattak S, Khan M I, Saddozai U A K, Ali N, Alasmari A F, Zaheer M, Badar M. A pH-responsive bi-MIL-88B MOF coated with folic acid-conjugated chitosan as a promising nanocarrier for targeted drug delivery of 5-fluorouracil[J]. Front. Pharmacol., 2023,141265440. doi: 10.3389/fphar.2023.1265440

    78. [78]

      Xie Z X, Liang S, Cai X C, Ding B B, Huang S S, Hou Z Y, Ma P A, Cheng Z Y, Lin J. O2-Cu/ZIF-8@Ce6/ZIF-8@F127 composite as a tumor microenvironment-responsive nanoplatform with enhanced photo-/chemodynamic antitumor efficacy[J]. ACS Appl. Mater. Interfaces, 2019,11(35):31671-31680. doi: 10.1021/acsami.9b10685

    79. [79]

      Hu C H, Yu Y Y, Chao S, Zhu H D, Pei Y X, Chen L, Pei Z C. A supramolecular photosensitizer system based on Nano-Cu/ZIF-8 capped with water-soluble pillar [6] arene and methylene blue host-guest complexations[J]. Molecules, 2021,26(13)3878. doi: 10.3390/molecules26133878

    80. [80]

      Wei Y J, Li J, Hu Z E, Xing X, Zhou Z W, Yu Y, Yu X Q, Zhang J, Liu Y H, Wang N. A porphyrin-MOF-based integrated nanozyme sys-tem for catalytic cascades and light-enhanced synergistic amplifica-tion of cellular oxidative stress[J]. J. Mater. Chem. B, 2023,11(28):6581-6594. doi: 10.1039/D3TB00681F

    81. [81]

      Heiden M G V, Cantley L C, Thompson C B. Understanding the War-burg effect: The metabolic requirements of cell proliferation[J]. Science, 2009,324(5930):1029-1033. doi: 10.1126/science.1160809

    82. [82]

      Wang M, Wang D M, Chen Q, Li C X, Li Z Q, Lin J. Recent advances in glucose-oxidase-based nanocomposites for tumor therapy[J]. Small, 2019,15(51)1903895. doi: 10.1002/smll.201903895

    83. [83]

      Wang Z, Liu B, Sun Q Q, Dong S M, Kuang Y, Dong Y S, He F, Gai S L, Yang P P. Fusiform-like copper (Ⅱ)-based metal-organic frame-work through relief hypoxia and GSH-depletion co-enhanced starva-tion and chemodynamic synergetic cancer therapy[J]. ACS Appl. Mater. Interfaces, 2020,12(15):17254-17267. doi: 10.1021/acsami.0c01539

    84. [84]

      Chen J J, Niu H C, Guan L, Yang Z B, He Y Z, Zhao J J, Wu C T, Wang Y T, Lin K L, Zhu Y F. Microneedle-assisted transdermal delivery of 2D bimetallic metal-organic framework nanosheet-based cascade biocatalysts for enhanced catalytic therapy of melanoma[J]. Adv. Healthc. Mater., 2023,12(7)2202474. doi: 10.1002/adhm.202202474

    85. [85]

      Xiao Y, Lai F X, Xu M R, Zheng D N, Hu Y, Sun M, Lv N. Dual-functional nanoplatform based on bimetallic metal-organic frame-works for synergistic starvation and chemodynamic therapy[J]. ACS Biomater. Sci. Eng., 2023,9(4):1991-2000. doi: 10.1021/acsbiomaterials.2c01476

    86. [86]

      Wang C, Lv G C, Feng S Y, Liu C, Song Z Q, Zhao H, Li Y, Wang K Z. Electrospun fibers integrating enzyme-functionalized metal-organic frameworks for postoperative tumor recurrence inhibition and simul-taneously wound tissue healing[J]. Int. J. Biol. Macromol., 2023,248125876. doi: 10.1016/j.ijbiomac.2023.125876

    87. [87]

      Feng L, Chen M Y, Li R H, Zhou L L, Wang C H, Ye P T, Hu X C, Yang J X, Sun Y T, Zhu Z N, Fang K, Chai K K, Shi S, Dong C Y. Biodegradable oxygen-producing manganese-chelated metal organic frameworks for tumor-targeted synergistic chemo/photothermal/pho-todynamic therapy[J]. Acta Biomater., 2022,138:463-477. doi: 10.1016/j.actbio.2021.10.032

    88. [88]

      Jing X A, Meng L J, Fan S, Yang T T, Zhang N, Xu R H, Zhao X P, Yang H B, Yang Z W, Wang D Q, Liang Y, Zhou G Q, Ji W C, She J J. Tumor microenvironment self-regulation: Bimetallic metal nanozyme-derived multifunctional nanodrug for optimizable cascade catalytic reaction-synergetic anti-tumor theranostics[J]. Chem. Eng. J., 2022,442136096. doi: 10.1016/j.cej.2022.136096

    89. [89]

      Cheng Y, Wen C, Sun Y Q, Yu H, Yin X B. Mixed-metal MOF-derived hollow porous nanocomposite for trimodality imaging guided reactive oxygen species-augmented synergistic therapy[J]. Adv. Funct. Mater., 2021,31(37)104378.

    90. [90]

      Luo S L, Zhang E L, Su Y P, Cheng T M, Shi C M. A review of NIR dyes in cancer targeting and imaging[J]. Biomaterials, 2011,32(29):7127-7138. doi: 10.1016/j.biomaterials.2011.06.024

    91. [91]

      Akakuru O U, Iqbal M Z, Saeed M, Liu C, Paunesku T, Woloschak G, Hosmane N S, Wu A. The Transition from metal-based to metal-free contrast agents for T1 magnetic resonance imaging enhance-ment[J]. Bioconjugate Chem., 2019,30(9):2264-2286. doi: 10.1021/acs.bioconjchem.9b00499

    92. [92]

      Nie Y B, Li D, Peng Y, Wang S F, Hu S, Liu M, Ding J S, Zhou W H. Metal organic framework coated MnO2 nanosheets delivering doxorubicin and self-activated DNAzyme for chemo-gene combina-torial treatment of cancer[J]. Int. J. Pharm., 2020,585119513. doi: 10.1016/j.ijpharm.2020.119513

    93. [93]

      López-Cabrelles J, Escalera-Moreno L, Hu Z, Prima-García H, Espallargas G M, Gaita-Ariño A, Coronado E. Near isotropic D4d spin qubits as nodes of a Gd (Ⅲ)-based metal-organic framework[J]. Inorg. Chem., 2021,60(12):8575-8580. doi: 10.1021/acs.inorgchem.1c00504

    94. [94]

      Pan Y B, Wang S Q, He X C, Tang W W, Wang J H, Shao A W, Zhang J M. A combination of glioma in vivo imaging and in vivo drug delivery by metal-organic framework based composite nanoparticles[J]. J. Mater. Chem. B, 2019,7(48):7683-7689. doi: 10.1039/C9TB01651A

    95. [95]

      Chen Y, Li Z H, Pan P, Hu J J, Cheng S X, Zhang X Z. Tumor-micro-environment-triggered ion exchange of a metal-organic framework hybrid for multimodal imaging and synergistic therapy of tumors[J]. Adv. Mater., 2020,32(24)2001452. doi: 10.1002/adma.202001452

    96. [96]

      Hu J Q, Chen Y, Zhang H, Chen Z X, Ling Y, Yang Y T, Liu X F, Jia Y, Zhou Y M. TEA-assistant synthesis of MOF-74 nanorods for drug delivery and in-vitro magnetic resonance imaging[J]. Microporous Mesoporous Mat., 2021,315110900. doi: 10.1016/j.micromeso.2021.110900

    97. [97]

      Lu Y, Zhang P, Lin L H, Gao X, Zhou Y F, Feng J, Zhang H J. Ultra-small bimetallic phosphides for dual-modal MRI imaging guided photothermal ablation of tumors[J]. Dalton Trans., 2022,51(11):4423-4428. doi: 10.1039/D1DT03898B

    98. [98]

      Kobayashi H, Ogawa M, Alford R, Choyke P L, Urano Y. New strate-gies for fluorescent probe design in medical diagnostic imaging[J]. Chem. Rev., 2010,110(5):2620-2640. doi: 10.1021/cr900263j

    99. [99]

      Zhong Y Y, Li X S, Chen J H, Wang X X, Wei L T, Fang L Q, Kumar A, Zhuang S Z, Liu J Q. Recent advances in MOF-based nanoplatforms generating reactive species for chemodynamic thera-py[J]. Dalton Trans., 2020,49(32):11045-11058. doi: 10.1039/D0DT01882A

    100. [100]

      Cao W, Wang X D, Song L, Wang P Y, Hou X M, Zhang H C, Tian X D, Liu X L, Zhang Y. Folic acid-conjugated gold nanorod@poly-pyrrole@Fe3O4 nanocomposites for targeted MR/CT/PA multimodal imaging and chemo-photothermal therapy[J]. RSC Adv., 2019,9(33):18874-18887. doi: 10.1039/C9RA00541B

    101. [101]

      Zhong Y A, Meng F H, Deng C, Zhong Z Y. Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy[J]. Biomacromolecules, 2014,15(6):1955-1969. doi: 10.1021/bm5003009

    102. [102]

      He S M, Du Y, Tao H Y, Duan H Y. Advances in aptamer-mediated targeted delivery system for cancer treatment[J]. Int. J. Biol. Macromol., 2023,238124173. doi: 10.1016/j.ijbiomac.2023.124173

  • 加载中
    1. [1]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    2. [2]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    3. [3]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    4. [4]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    5. [5]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    6. [6]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    7. [7]

      Jinkang Jin Yidian Sheng Ping Lu Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054

    8. [8]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    9. [9]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    10. [10]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    11. [11]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    12. [12]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    13. [13]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    14. [14]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    15. [15]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    16. [16]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    17. [17]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    18. [18]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    19. [19]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    20. [20]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

Metrics
  • PDF Downloads(22)
  • Abstract views(744)
  • HTML views(155)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return