Citation: Yiping HUANG, Liqin TANG, Yufan JI, Cheng CHEN, Shuangtao LI, Jingjing HUANG, Xuechao GAO, Xuehong GU. Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224 shu

Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation

Figures(15)

  • This work investigated the deep dehydration process of ethanol solvent by vapor permeation technique of hollow fiber supported NaA zeolite membrane using the combined operations of N2 sweeping and vacuum suction. The results indicated sweeping gas plays a dominant role in the deep dehydration of ethanol. Compared with the case without any sweeping (under an operation temperature of 100 ℃ and a feeding liquid flow rate of 30 mL·min-1), the N2 sweeping with a flow rate of 60 mL·min-1 could promote the membrane dehydration efficiency by several folds, where the production efficiency was enhanced by 43% to obtain the ethanol with ultra-low water content of 0.04%. For a higher operation temperature of 120 ℃, the water content in ethanol could be further reduced to 0.068‰ when the feeding liquid flow rate increased to 50 mL·min-1, where the harvest percentage was high up to 99.86%.
  • 加载中
    1. [1]

      DRIOLI E, MACEDONIO F, TOCCI E. Membrane science and membrane engineering for a sustainable industrial development[J]. Sep. Purif. Technol., 2021,275119196. doi: 10.1016/j.seppur.2021.119196

    2. [2]

      GAO X C, LI Z, CHEN C, DA C, LIU L, TIAN S, JI G Z. The determination of pore shape and interfacial barrier of entry for light gases transport in amorphous TEOS-derived silica: A finite element method[J]. ACS Appl. Mater. Interfaces, 2021,13(3):4804-4812. doi: 10.1021/acsami.0c20594

    3. [3]

      YANG Z Z, LIU Y M, YU C L, GU X H, XU N P. Ball-milled NaA zeolite seeds with submicron size for growth of NaA zeolite membranes[J]. J. Membr. Sci., 2012,392:18-28.  

    4. [4]

      CHAPMAN P D, OLIVEIRA T, LIVINGSTON A G, LI K. Membranes for the dehydration of solvents by pervaporation[J]. J. Membr. Sci., 2008,318(1/2):5-37.  

    5. [5]

      WANG X R, JIANG J, LIU D Z, XUE Y Q, ZHANG C, GU X H. Evaluation of hollow fiber T-type zeolite membrane modules for ethanol dehydration[J]. J. Membr. Sci., 2017,25(5):581-586.  

    6. [6]

      BERNARDO P, DRIOLI E, GOLEMME G. Membrane gas separation: A review/state of the art[J]. Ind. Eng. Chem. Res., 2009,48(10):4638-4663. doi: 10.1021/ie8019032

    7. [7]

      VANE L M. Review: Membrane materials for the removal of water from industrial solvents by pervaporation and vapor permeation[J]. J. Chem. Technol. Biotechnol., 2019,94(2):343-365. doi: 10.1002/jctb.5839

    8. [8]

      VAN HOOF V, DOTREMONT C, BUEKENHOUDT A. Performance of Mitsui NaA type zeolite membranes for the dehydration of organic solvents in comparison with commercial polymeric pervaporation membranes[J]. Sep. Purif. Technol., 2006,48(3):304-309. doi: 10.1016/j.seppur.2005.06.019

    9. [9]

      GASCON J, KAPTEIJN F, ZORNOZA B, SEBASTIÁN V, CASADO C, CORONAS J. Practical approach to zeolitic membranes and coatings: State of the art, opportunities, barriers, and future perspectives[J]. Chem. Mat., 2012,24(15):2829-2844. doi: 10.1021/cm301435j

    10. [10]

      ZHANG C, PENG L, JIANG J, GU X H. Mass transfer model, preparation and applications of zeolite membranes for pervaporation dehydration: A review[J]. Chin. J. Chem. Eng., 2017,25(11):1627-1638. doi: 10.1016/j.cjche.2017.09.014

    11. [11]

      LIU D Z, ZHANG Y T, JIANG J, WANG X R, ZHANG C, GU X H. High-performance NaA zeolite membranes supported on four-channel ceramic hollow fibers for ethanol dehydration[J]. RSC Adv., 2015,5(116):95866-95871. doi: 10.1039/C5RA18711G

    12. [12]

      WANG J C, YE P, GAO X C, ZHANG Y T, GU X H. Modeling investigation of geometric size effect on pervaporation dehydration through scaled-up hollow fiber NaA zeolite membranes[J]. Chin. J. Chem. Eng., 2018,26(7):1477-1484. doi: 10.1016/j.cjche.2018.01.027

    13. [13]

      WANG J C, GAO X C, JI G Z, GU X H. CFD simulation of hollow fiber supported NaA zeolite membrane modules[J]. Sep. Purif. Technol., 2019,213:1-10. doi: 10.1016/j.seppur.2018.12.017

    14. [14]

      LIU H, LIU J N, HONG Z, WANG S X, GAO X C, GU X H. Preparation of hollow fiber membranes from mullite particles with aid of sintering additives[J]. J. Adv. Ceram., 2021,10(1):78-87. doi: 10.1007/s40145-020-0420-7

    15. [15]

      ZENG W H, LI B B, LI H, LI W, JIN H, LI Y S. Mass produced NaA zeolite membranes for pervaporative recycling of spent N-methyl-2-pyrrolidone in the manufacturing process for lithium-ion battery[J]. Sep. Purif. Technol., 2019,228115471.  

    16. [16]

      JI M M, GAO X C, ZHANG Y T, JIANG J, GU X H. An ensemble synthesis strategy for fabrication of hollow fiber T-type zeolite membrane modules[J]. J. Membr. Sci., 2018,563:460-469. doi: 10.1016/j.memsci.2018.06.006

    17. [17]

      GAO X C, GAO B, LIU H, ZHANG C, ZHANG Y T, JIANG J, GU X H. Fabrication of stainless steel hollow fiber supported NaA zeolite membrane by self-assembly of submicron seeds[J]. Sep. Purif. Technol., 2020,234116121. doi: 10.1016/j.seppur.2019.116121

    18. [18]

      LIU H, GAO X C, PENG L, GU X H. TiO2 doping of α-Al2O3 hollow fiber membranes for modulating the sintering behavior and surface property[J]. Chinese J. Inorg. Chem., 2022,38(1):14-20.  

    19. [19]

      WANG L, YANG J H, WANG J Q, RAZA W, LIU G R, LU J M, ZHANG Y. Microwave synthesis of NaA zeolite membranes on coarse macroporous α‑Al2O3 tubes for desalination[J]. Microporous Mesoporous Mat., 2020,306110360. doi: 10.1016/j.micromeso.2020.110360

    20. [20]

      ZHOU J J, ZHOU C, XU K, CARO J, HUANG A S. Seeding-free synthesis of large tubular zeolite FAU membranes for dewatering of dimethyl carbonate by pervaporation[J]. Microporous Mesoporous Mat., 2020,292109713. doi: 10.1016/j.micromeso.2019.109713

    21. [21]

      ZHANG Y T, DU P, SHI R, HONG Z, ZHU X F, GAO B, GU X H. Blocking defects of zeolite membranes with WS2 nanosheets for vapor permeation dehydration of low water content isopropanol[J]. J. Membr. Sci., 2020,597117625. doi: 10.1016/j.memsci.2019.117625

    22. [22]

      SARTORI E. A critical review on equations employed for the calculation of the evaporation rate from free water surfaces[J]. Sol. Energy, 2000,68(1):77-89. doi: 10.1016/S0038-092X(99)00054-7

    23. [23]

      CHONG J Y, WANG B, LI K. Water transport through graphene oxide membranes: The roles of driving forces[J]. Chem. Commun., 2018,54(20):2554-2557. doi: 10.1039/C7CC09120F

    24. [24]

      NAIR R R, WU H A, JAYARAM P N, GRIGORIEVA I V, GEIM A K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes[J]. Science, 2012,335(6067):442-444. doi: 10.1126/science.1211694

    25. [25]

      HOLT J K, PARK H G, WANG Y, STADERMANN M, ARTYUKHIN A B, GRIGOROPOULOS C P, NOY A, BAKAJIN O. Fast mass transport through sub-2-nanometer carbon nanotubes[J]. Science, 2006,312(5776):1034-1037. doi: 10.1126/science.1126298

    26. [26]

      OKAMOTO K, KITA H, HORⅡ K, TANAKA K, KONDO M. Zeolite NaA membrane: Preparation, single-gas permeation, and pervaporation and vapor permeation of water/organic liquid mixtures[J]. Ind. Eng. Chem. Res., 2001,40(1):163-175. doi: 10.1021/ie0006007

    27. [27]

      JI G Z, WANG G X, HOOMAN K, BHATIA S, DA COSTA J C D. Simulation of binary gas separation through multi-tube molecular sieving membranes at high temperatures[J]. Chem. Eng. J., 2013,218:394-404. doi: 10.1016/j.cej.2012.12.063

    28. [28]

      WU J, CHEN V. Shell-side mass transfer performance of randomly packed hollow fiber modules[J]. J. Membr. Sci., 2000,172(1):59-74.  

    29. [29]

      LIU Y M, WANG X R, ZHANG Y T, HE Y, GU X H. Scale-up of NaA zeolite membranes on α-Al2O3 hollow fibers by a secondary growth method with vacuum seeding[J]. Chin. J. Chem. Eng., 2015,23(7):1114-1122. doi: 10.1016/j.cjche.2015.04.006

  • 加载中
    1. [1]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    2. [2]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    3. [3]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    4. [4]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    5. [5]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    6. [6]

      Bin Chen Chaoyang Zheng Dehuan Shi Yi Huang Renxia Deng Yang Wei Zheyuan Liu Yan Yu Shenghong Zhong . p-d orbital hybridization induced by CuGa2 promotes selective N2 electroreduction. Chinese Journal of Structural Chemistry, 2025, 44(1): 100468-100468. doi: 10.1016/j.cjsc.2024.100468

    7. [7]

      Chang LIUChao ZHANGTongbu LU . Small-size Au nanoparticles anchored on pyrenyl-graphdiyne for N2 electroreduction. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 174-182. doi: 10.11862/CJIC.20240305

    8. [8]

      Chaozheng HeMenghui XiChenxu ZhaoRan WangLing FuJinrong Huo . Highly N2 dissociation catalyst: Ir(100) and Ir(110) surfaces. Chinese Chemical Letters, 2025, 36(3): 109671-. doi: 10.1016/j.cclet.2024.109671

    9. [9]

      Jingtai BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639

    10. [10]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    11. [11]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    12. [12]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    13. [13]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    14. [14]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    15. [15]

      Yinuo Wu Jiantao Ye Xie Zhou Yu Qian Lei Guo . Teaching Design of Basic Chemistry Based on PBL Methodology for Medical Undergraduates: A Case Study on “Osmotic Pressure of Solution”. University Chemistry, 2024, 39(3): 149-157. doi: 10.3866/PKU.DXHX202309077

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    18. [18]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    19. [19]

      Peiqi Gao Jiao Zheng LiMiao Chen Yi Zhang . Exploration of the Deep Integration Strategy between Innovation and Entrepreneurship Education and Applied Chemistry Major Courses. University Chemistry, 2024, 39(6): 214-219. doi: 10.3866/PKU.DXHX202310086

    20. [20]

      Haolin Zhan Qiyuan Fang Jiawei Liu Xiaoqi Shi Xinyu Chen Yuqing Huang Zhong Chen . Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Networ. Acta Physico-Chimica Sinica, 2025, 41(2): 100017-. doi: 10.3866/PKU.WHXB202310045

Metrics
  • PDF Downloads(3)
  • Abstract views(494)
  • HTML views(121)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return