Citation: Guanghui SUI, Yanyan CHENG. Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221 shu

Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors

  • Corresponding author: Guanghui SUI, ghsui@ncnu.edu.cn
  • Received Date: 12 June 2024
    Revised Date: 7 December 2024

Figures(8)

  • Amorphous activated carbon (AC) material was obtained by carbonizing rice husk at low temperatures and activated by KOH at high temperatures. A series of MgO-loaded AC materials (MgO/AC) were prepared by in-situ loading of magnesium chloride. The surface morphology and elemental composition of MgO/AC materials were studied using X-ray diffraction (XRD), laser co-polymerization Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy-energy dispersive spectrometer (SEM-EDS), and nitrogen adsorption-desorption test. The possible relationship between pore structure and electrochemical performance was analyzed in detail. The test results indicated that 2.0MgO/AC electrodes were assembled into a symmetric supercapacitor, and the gravimetric capacitance was 211.9 F·g-1 at 0.5 A·g-1. It had an energy density of 18.30 Wh·kg-1 at a power density of 0.41 kW·kg-1 and the retention rate was 86.8% after 5 000 cycles.
  • 加载中
    1. [1]

      XIE K Y, WEI B Q. Materials and structures for stretchable energy storage and conversion devices[J]. Adv. Mater., 2014,26(22):3592-3617. doi: 10.1002/adma.201305919

    2. [2]

      PRESSER V, DENNISON C R, CAMPOS J, KNEHR K W, KUMBUR E C, GOGOTSI Y. The electrochemical flow capacitor: A new concept for rapid energy storage and recovery[J]. Adv. Energy Mater., 2012,2(7):895-902. doi: 10.1002/aenm.201100768

    3. [3]

      TRUDEAU M L, EDITOR G. Advanced materials for energy storage[J]. MRS Bull., 1999,24(11):23-26. doi: 10.1557/S0883769400053410

    4. [4]

      GROUP C R. What are batteries, fuel cells, and supercapacitors[J]. Chem. Rev., 2004,104(10):4245-4269. doi: 10.1021/cr020730k

    5. [5]

      RAMACHANDRAN R, WANG Y, CHANDRASEKARAN S, LI M, LUO A, XU Z, WANG F. Construction of MoS2 intercalated siloxene heterostructure for all-solid-state symmetric supercapacitors[J]. Appl. Mater. Today, 2022,29101578. doi: 10.1016/j.apmt.2022.101578

    6. [6]

      GUO N N, ZHANG S, WANG L X, JIA D Z. Application of plant-based porous carbon for supercapacitors[J]. Acta Phys. - Chim. Sin., 2020,36(2):17-37.

    7. [7]

      YU Z Q, WANG X H, LIU H R, HUANG W B, DENG K X, LIU X Y, XIAO Z H, WEI Q, ZHOU Y S. Synthesis of cube MgO@AC and catalytic performance of its supported CoMo for hydrodesulfurization of 4, 6-dimethyldibenzothiophene[J]. Fuel, 2023,344128072. doi: 10.1016/j.fuel.2023.128072

    8. [8]

      SU S J, NULI Y N, FEILURE T, YANG J, WANG J L. Effects of cathode current collectors on the electrochemical performance of rechargeable magnesium batteries[J]. Acta Phys.-Chim. Sin., 2015,31(1):111-120.

    9. [9]

      LV X L, ZHANG Y X, LI X J, FAN Z Y, LIU G, ZHANG W J, ZHOU J Y, XIE E Q, ZHANG Z X. High-performance magnesium ion asymmetric Ppy@FeOOH//Mn3O4 micro-supercapacitor[J]. J. Energy Chem., 2022,72:352-360. doi: 10.1016/j.jechem.2022.03.014

    10. [10]

      ORIKASA Y, MASESE T, KOYAMA Y, MORI T, HATTORI M, YAMAMOTO K, OKADO T, HUANG Z D, MINATO T, TASSEL C, KIM J, KOBAYASHI Y, ABE T, KAGEYAMA H, UCHIMOTO Y. High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements[J]. Sci. Rep., 2014,4:5622-5627. doi: 10.1038/srep05622

    11. [11]

      YOO H D, LIANG Y L, DONG H, LIN J H, WANG H, LIU Y S, MA L, WU T P, LI Y F, RU Q, JING Y, AN Q Y, ZHOU W, GUO J H, LU J, PANTELIDES S T, QIAN X F, YAO Y. Fast kinetics of magnesium monochloride cations in interlayer-expanded titanium disulfide for magnesium rechargeable batteries[J]. Nat. Commun., 2017,8(1):339-348. doi: 10.1038/s41467-017-00431-9

    12. [12]

      SAHA P, DATTA M K, VELIKOKHATNYI O I, MANIVANNAN A, ALMAN D, KUMTA P N. Rechargeable magnesium battery: Current status and key challenges for the future[J]. Prog. Mater. Sci., 2014,66:1-86. doi: 10.1016/j.pmatsci.2014.04.001

    13. [13]

      TRIVEDI M, KYU T. Solid-state polymer magnesium supercapacitor[J]. Solid State Ionics, 2023,394116189. doi: 10.1016/j.ssi.2023.116189

    14. [14]

      LIU N N, ZHAO J J, OSMAN S, WANG L R, JIANG G S, SUN Y Z, LIU X G, PAN J Q. Honeycomb-like porous carbon derived from fluorinated magnesium-based metal organic frameworks as an electrode material for supercapacitors[J]. J. Energy Storage, 2023,63106939. doi: 10.1016/j.est.2023.106939

    15. [15]

      PANG Y H. Study on preparation, modification and properties of reed-based carbon materials[D]. Changsha: Central South University of Forestry and Technology, 2023: 41-45

    16. [16]

      NASKAR I, GHOSAL P, DEEPA M. Efficient charge storage by ZnCo2S4 nanoflakes@MgCo2O4 nanorods composite in Mg2+/Zn2+/K+ conducting electrolytes[J]. J. Energy Storage, 2022,55:546-561.

    17. [17]

      SUI G H, CHENG Y Y, CHEN Z M, WEI Q L, WANG X F, YANG X M, WANG Z C. Comprehensive utilization of rice husk to prepare xylose, capacitance carbon and calcium silicate whiskers[J]. Chem. J. Chinese Universities, 2019,40(2):224-229.

    18. [18]

      SHANG T X, REN R Q, ZHU Y M, JIN X J. Oxygen-and nitrogen-codoped activated carbon from waste particleboard for potential application in high-performance capacitance[J]. Electrochim. Acta, 2015,163:32-40. doi: 10.1016/j.electacta.2015.02.147

    19. [19]

      DONG S A, HE X J, ZHANG H F, XIE X Y, YU M X, YU C, XIAO N, QIU J S. Surface modification of biomass-derived hard carbon by grafting porous carbon nanosheets for high-performance supercapacitors[J]. J. Mater. Chem. A, 2018,6(33):15954-15960. doi: 10.1039/C8TA04080J

    20. [20]

      TEO E Y L, MUNIANDY L, NG E P, ADAM F, MOHAMED A R, JOSE R, CHONG K F. High surface area activated carbon from rice husk as a high performance supercapacitor electrode[J]. Electrochim. Acta, 2016,192:110-119. doi: 10.1016/j.electacta.2016.01.140

    21. [21]

      STRZEMIECKA B, VOELKEL A, DONATE-ROBLES J, MARTÍN-MARTÍNEZ J M. Assessment of the surface chemistry of carbon blacks by TGA-MS, XPS and inverse gas chromatography using statistical chemometric analysis[J]. Appl. Surf. Sci., 2014,316:315-323. doi: 10.1016/j.apsusc.2014.07.174

    22. [22]

      KONG J J, YUE Q Y, ZHAO P, GAO B Y, LI Q, WANG Y, NGO H H, GUO W S. Comparative study on microstructure and surface properties of keratin and lignocellulosic-based activated carbons[J]. Fuel Process. Technol., 2015,140:67-75. doi: 10.1016/j.fuproc.2015.08.025

    23. [23]

      KHAIRALLAH F, GLISENTI A. XPS study of MgO nanopowders obtained by different preparation procedures[J]. Surf. Sci. Spectra, 2006,13(1):58-71. doi: 10.1116/11.20060601

    24. [24]

      WANG J S, QIN F F, GUO Z Y, SHEN W Z. Oxygen- and nitrogenenriched honeycomb-like porous carbon from laminaria japonica with excellent supercapacitor performance in aqueous solution[J]. ACS Sustain. Chem. Eng., 2019,7(13):11550-11563. doi: 10.1021/acssuschemeng.9b01448

    25. [25]

      SUN D, LI W, GUO R T, LIANG Q, LIU Z, HAN G C. Preparation of N-doped biomass C@SnO2 composites and its electrochemical performance[J]. Diam. Relat. Mater., 2021,120108674. doi: 10.1016/j.diamond.2021.108674

    26. [26]

      CHEN Z M, WANG X F, XUE B C, WEI Q L, HU L H, WANG Z C, YANG X M, QIU J S. Self-templating synthesis of 3D hollow tubular porous carbon derived from straw cellulose waste with excellent performance for supercapacitors[J]. ChemSusChem, 2019,12:1390-1400. doi: 10.1002/cssc.201802945

    27. [27]

      CHMIOLA J, YUSHIN G, DASH R, GOGOTSI Y. Effect of pore size and surface area of carbide derived carbons on specific capacitance[J]. J. Power Sources, 2006,158(1):765-772. doi: 10.1016/j.jpowsour.2005.09.008

    28. [28]

      ZHAO Y Q, LU M, TAO P Y, ZHANG Y J, GONG X T, YANG Z, ZHANG G Q, LI H L. Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors[J]. J. Power Sources, 2016,307:391-400. doi: 10.1016/j.jpowsour.2016.01.020

    29. [29]

      BARCZAK M, ELSAYED Y, JAGIELLO J, BANDOSZ T J. Exploring the effect of ultramicropore distribution on gravimetric capacitance of nanoporous carbons[J]. Electrochim. Acta, 2018,275:236-247. doi: 10.1016/j.electacta.2018.04.035

    30. [30]

      BLEDA-MARTÍNEZ M J, LOZANO-CASTELLÓ D, MORALLÓN E, CAZORLA-AMORÓS D, LINARES-SOLANO A. Chemical and electrochemical characterization of porous carbon materials[J]. Carbon, 2006,44(13):2642-2651. doi: 10.1016/j.carbon.2006.04.017

    31. [31]

      SUN G H, WANG J, LI K X, LI Y Q, XIE L J. Polystyrene-based carbon spheres as electrode for electrochemical capacitors[J]. Electrochim. Acta, 2012,59:424-428. doi: 10.1016/j.electacta.2011.10.067

    32. [32]

      GAO Y, YUE Q Y, GAO B Y. High surface area and oxygen-enriched activated carbon synthesized from animal cellulose and evaluated in electric double-layer capacitors[J]. RSC Adv., 2015,5(40):31375-31383. doi: 10.1039/C4RA16965D

    33. [33]

      WU M B, AI P I, TAN M H, JIANG B, LI Y P, ZHENG J T, WU W T, LI Z T, ZHANG Q H, HE X J. Synthesis of starch-derived mesoporous carbon for electric double layer capacitor[J]. Chem. Eng. J., 2014,245:166-172. doi: 10.1016/j.cej.2014.02.023

    34. [34]

      XUE B C, WANG Z C, ZHU Y C, WANG X F, XIAO R. Sustainable and recyclable synthesis of porous carbon sheets from rice husks for energy storage: A strategy of comprehensive utilization[J]. Ind. Crop. Prod., 2021,170113724. doi: 10.1016/j.indcrop.2021.113724

    35. [35]

      LIU X M, ZHAO L Y, LI H Y, CHEN Y T, WU A M, LI A K, HUANG H. Ga2O3 coated modification and electrochemical perfor-mance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material[J]. Chinese J. Inorg. Chem., 2024,40(6):1105-1113.  

  • 加载中
    1. [1]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    2. [2]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    3. [3]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    4. [4]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . 二维材料基超级电容器的容量与倍率性能提升策略. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    5. [5]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    6. [6]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    7. [7]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    8. [8]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    9. [9]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    10. [10]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    11. [11]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    12. [12]

      Yu'ang Liu Yuechao Wu Junyu Huang Tao Wang Xiaohong Liu Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, 2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112

    13. [13]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    14. [14]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    15. [15]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    16. [16]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    17. [17]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    18. [18]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    19. [19]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    20. [20]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

Metrics
  • PDF Downloads(2)
  • Abstract views(266)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return