Citation: Peng YUE, Liyao SHI, Jinglei CUI, Huirong ZHANG, Yanxia GUO. Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210 shu

Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst

  • Corresponding author: Jinglei CUI, cuijl@sxu.edu.cn
  • Received Date: 4 June 2024
    Revised Date: 15 November 2024

Figures(10)

  • A series of Ce, Mn-modified catalysts were prepared based on the V2O5/TiO2 catalyst matrix, and the structure and active components of the catalysts were analyzed using nitrogen adsorption-desorption, X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscope. The reaction activity was also explored. The results indicated that the prepared modified V2O5/TiO2 catalysts had good dispersion, and the Ce-Mn bimetalmodification improved the NH3 conversion rate and N2 selectivity of catalysts. When the loading amounts of Ce and Mn (the mass ratio of Ce or Mn to TiO2) were 8% and 6%, respectively, the NH3 conversion rate of the modified material reached 100% at 310 ℃, with an N2 selectivity of 78%. In-situ diffuse reflectance Fourier transform infrared spectroscopy characterization showed that NH3 adsorbed on the surface hydroxyl groups of the catalyst would preferentially participate in the reaction. As the temperature increased, NH3 adsorbed on the Brønsted and Lewis acid sites on the catalyst surface began to participate in the reaction, and at higher temperatures, the Lewis acid sites were the main sites for NH3 conversion.
  • 加载中
    1. [1]

      CHEN J W, ZHAO R, ZHOU R X. In-situ synthesis of Cu-SSZ-13 catalyst: Effect of crystallization time on NH3-SCR performance[J]. Chinese J. Inorg. Chem., 2018,34(12):2135-2142. doi: 10.11862/CJIC.2018.276

    2. [2]

      GAO W X, WEN J, DENG J, XU H D, CHEN Y D. Effects of hydro-thermal aging on NH3-SCR performance of Cu-modified W/CeTi catalysts[J]. Chinese J. Inorg. Chem., 2023,39(10):1877-1886. doi: 10.11862/CJIC.2023.153

    3. [3]

      SHU H, ZHANG Y H, YANG L J, LIU Y M, LI F Y, XU Q S, PAN S W. Study on the influence mechanism of SCR flue gas denitration on PM2.5 emission characteristics[J]. J. Fuel Chem. Technol., 2015,43(12):1510-1515. doi: 10.3969/j.issn.0253-2409.2015.12.016

    4. [4]

      GAO F Y, LIU Y Y, SANI Z, TANG X L, YI H H, ZHAO S Z, YU Q J, ZHOU Y S. Advances in selective catalytic oxidation of ammonia (NH3-SCO) to dinitrogen in excess oxygen: A review on typical catalysts, catalytic performances and reaction mechanisms[J]. J. Environ. Chem. Eng., 2021,9(1)104575. doi: 10.1016/j.jece.2020.104575

    5. [5]

      HAN L P, CAI S X, GAO M, HASEGAWA J, WANG P L, ZHANG J P, SHI L Y, ZHANG D S. Selective catalytic reduction of NOx with NH3 by using novel catalysts: State of the art and future prospects[J]. Chem. Rev., 2019,119(19):10916-10976. doi: 10.1021/acs.chemrev.9b00202

    6. [6]

      PÉREZ-RAMÍREZ J, KONDRATENKO E V, NOVELL-LERUTH G, RICART J M. Mechanism of ammonia oxidation over PGM (Pt, Pd, Rh) wires by temporal analysis of products and density functional theory[J]. J. Catal., 2009,261(2):217-223. doi: 10.1016/j.jcat.2008.11.018

    7. [7]

      JABŁOŃSKA M, KRÓL A, KUKULSKA-ZAJAC E, TARACH K, CHMIELARZ L, GÓRA-MAREK K. Zeolite Y modified with palladium as effective catalyst for selective catalytic oxidation of ammonia to nitrogen[J]. J. Catal., 2014,316:36-46. doi: 10.1016/j.jcat.2014.04.022

    8. [8]

      IL'CHENKO N I, GOLODETS G I, AVILOVA I M. Oxidation of ammonia on metals[J]. Kinet. Catal., 1975,16(6):1264-1268.

    9. [9]

      SONG D D, SHAO X Z, YUAN M L, WANG L, ZHAN W C, GUO Y L, GUO Y, LU G Z. Selective catalytic oxidation of ammonia over MnOx-TiO2 mixed oxides[J]. RSC Adv., 2016,6(91):88117-88125. doi: 10.1039/C6RA20999H

    10. [10]

      WANG Z, QU Z P, QUAN X, LI Z, WANG H, FAN R. Selective catalytic oxidation of ammonia to nitrogen over CuO-CeO2 mixed oxides prepared by surfactant-templated method[J]. Appl. Catal. B-Environ., 2013,134-135:153-166. doi: 10.1016/j.apcatb.2013.01.029

    11. [11]

      WANG Z, SUN Q, WANG D, HONG Z, QU Z P, LI X B. Hollow ZSM-5 zeolite encapsulated Ag nanoparticles for SO2-resistant selective catalytic oxidation of ammonia to nitrogen[J]. Sep. Purif. Technol., 2019,209:1016-1026. doi: 10.1016/j.seppur.2018.09.045

    12. [12]

      GANG L, GRONDELLE J V, ANDERSON B G, SANTEN R A V. Selective low temperature NH3 oxidation to N2 on copper-based catalysts[J]. J. Catal., 1999,186:100-109. doi: 10.1006/jcat.1999.2524

    13. [13]

      Lee S M, Hong S C. Promotional effect of vanadium on the selective catalytic oxidation of NH3 to N2 over Ce/V/TiO2 catalyst[J]. Appl. Catal. B-Environ., 2015,163:30-39. doi: 10.1016/j.apcatb.2014.07.043

    14. [14]

      CHEN C, XIE H D, HE P W, LIU X, YANG C, WANG N, GE C M. Comparison of low-temperature catalytic activity and H2O/SO2 resistance of the Ce-Mn/TiO2 NH3-SCR catalysts prepared by the reverse co-precipitation, co-precipitation and impregnation method[J]. Appl. Surf. Sci., 2022,571(4)151285.

    15. [15]

      KWON D W, LEE S M, HONG S C. Influence of attrition milling on V/Ti catalysts for the selective oxidation of ammonia[J]. Appl. Catal. A-Gen., 2015,505:557-565. doi: 10.1016/j.apcata.2015.02.007

    16. [16]

      WANG L, LI G B, WU P, SHEN K, ZHANG Y P, ZHANG S L, XIAO R. Promoting effect of Pd modification on the M/TiO2 (M=V, Ce, Mn) catalyst for catalytic oxidation of dichloromethane (DCM)[J]. Chem. Eng. Sci., 2021,234116405. doi: 10.1016/j.ces.2020.116405

    17. [17]

      LIU W J, LONG Y F, ZHOU Y Y, LIU S N, TONG X, YIN Y J, LI X Y, HU K, HU J J. Excellent low temperature NH3-SCR and NH3-SCO performance over Ag-Mn/Ce-Ti catalyst: Evaluation and charac-terization[J]. Mol. Catal., 2022,528112510. doi: 10.1016/j.mcat.2022.112510

    18. [18]

      YANG J, REN S, SU B X, ZHOU Y H, HU G, JIANG L J, CAO J, LIU W Z, YAO L, KONG M, YANG J, LIU Q C. Insight into N2O formation over different crystal phases of MnO2 during low-temperature NH3-SCR of NO[J]. Catal. Lett., 2021,151(10):2964-2971. doi: 10.1007/s10562-021-03541-8

    19. [19]

      DUAN K J, TANG X L, YI H H, NING P, WANG L D. Rare earth oxide modified Cu-Mn compounds supported on TiO2 catalysts for low temperature selective catalytic oxidation of ammonia and in lean oxygen[J]. J. Rare Earths, 2010,28:338-342. doi: 10.1016/S1002-0721(10)60277-3

    20. [20]

      YAO X J, ZHAO R D, CHEN L, DU J, TAO C Y, YANG F M, DONG L. Selective catalytic reduction of NOx by NH3 over CeO2 supported on TiO2: Comparison of anatase, brookite, and rutile[J]. Appl. Catal. B-Environ., 2017,208:82-93. doi: 10.1016/j.apcatb.2017.02.060

    21. [21]

      WANG C Z. Construction of flexible Mn-based SCR denitration catalyst and study on sulfur resistance mechanism[D]. Beijing: Beijing University of Science and Technology, 2022: 111-117

    22. [22]

      ZHANG P, CHEN A L, LAN T W, LIU X Y, YAN T T, REN W, ZHANG D S. Balancing acid and redox sites of phosphorylated CeO2 catalysts for NOx reduction: The promoting and inhibiting mechanism of phosphorus[J]. J. Hazard. Mater., 2023,441129867. doi: 10.1016/j.jhazmat.2022.129867

    23. [23]

      QU Z P, FAN R, WANG Z, WANG H, MIAO L. Selective catalytic oxidation of ammonia to nitrogen over MnO2 prepared by urea-assisted hydrothermal method[J]. Appl. Surf. Sci., 2015,351:573-579. doi: 10.1016/j.apsusc.2015.05.154

    24. [24]

      SHIN J H, KIM G J, SUNG C H. Reaction properties of ruthenium over Ru/TiO2 for selective catalytic oxidation of ammonia to nitrogen[J]. Appl. Surf. Sci., 2020,506144906. doi: 10.1016/j.apsusc.2019.144906

    25. [25]

      CHENG S S, HAN Z T, ZHAO H Z, LI Y S, LU S J. A novel bifunctional Pt/Ce/WZrOx catalyst for efficient selective oxidation of high-concentration NH3[J]. Chem. Eng. J., 2024,479147876. doi: 10.1016/j.cej.2023.147876

    26. [26]

      PENG R S, LI S J, SUN X B, REN Q M, CHEN L M, FU M L, WU J L, YE D Q. Size effect of Pt nanoparticles on the catalytic oxidation of toluene over Pt/CeO2 catalysts[J]. Appl. Catal. B-Environ., 2018,220:462-470. doi: 10.1016/j.apcatb.2017.07.048

    27. [27]

      REN S D, LIANG W J, LI Q L, ZHU Y X. Effect of Pd/Ce loading on the performance of Pd-Ce/γ-Al2O3 catalysts for toluene abatement[J]. Chemosphere, 2020,251126382. doi: 10.1016/j.chemosphere.2020.126382

    28. [28]

      YU J, GUO F, WANG Y L, ZHU J H, LIU Y Y, SU F B, GAO S Q, XU G W. Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH3[J]. Appl. Catal. B-Environ., 2010,95(1):160-168.

    29. [29]

      LI P, MA J Y, CHEN Z H, WANG L, GUO Y. Effect of Ru/α-MnO2 catalyst morphology on NH3-SCO reaction performance[J]. CIESC Journal, 2023,74(7):2908-2918.

    30. [30]

      ZHANG X Y, WANG H, MENG L L, NIE X W, QU Z P. Investigation on Cu2O surface reconstruction and catalytic performance of NH3-SCO by experimental and DFT studies[J]. ACS Appl. Energy Mater., 2020,3(4):3465-3476. doi: 10.1021/acsaem.9b02537

    31. [31]

      JIAN J, ZAHNG J M, SHE X, ZHOU H, YOU K Y, LUO H A. The effect of V4+/V5+ ratio on the catalytic performance of vanadium phosphorus oxide for NO2 oxidation of cyclohexane[J]. CIESC Journal, 2023,74(4):1570-1577.

    32. [32]

      XIE Y X, LIU T, SU S, LIU L J, ZHONG Y X, MA Z W, XU K, WANG Y, HU S, XIANG J. Effect of oxygen content in flue gas of industrial kiln on NH3-SCR denitration reaction of vanadium-titanium catalyst[J]. CIESC Journal, 2022,73(10):4410-4418.

    33. [33]

      WANG F, ZHU Y J, LI Z, SHAN Y L, SHAN W P, SHI X Y, YU Y B, ZHANG C B, LI K, NING P, ZHANG Y, HE H. Promoting effect of acid sites on NH3-SCO activity with water vapor participation for Pt-Fe/ZSM-5 catalyst[J]. Catal. Today, 2021,376:311-317. doi: 10.1016/j.cattod.2020.06.039

    34. [34]

      GE S W. Preparation of Cu-Ti-based catalysts and their performance for NH3-SCO and NH3-SCR[D]. Taiyuan: Taiyuan University of Technology, 2022: 51-53

    35. [35]

      SVINTSITSKIY D A, KIBIS L S, STADNICHENKO A, SLAVINSKAYA E M, ROMANENKO A V, FEDOROVA E A, STONKUS O A, DORONKIN D E, MARCHUK V, ZIMINA A, CASAPU M, GRUNWALDT J D, BORONIN A I. Insight into the nature of active species of Pt/Al2O3 catalysts for low temperature NH3 oxidation[J]. ChemCatChem, 2020,12(3):867-880. doi: 10.1002/cctc.201901719

    36. [36]

      CHENG S S, HAN Z T, XU D, LI Y S, TIAN Y, ZENG Q L, LU S J. Copper loading effect on active species formation over Cu/SSZ-13 catalysts for selective catalytic oxidation of high-concentration NH3[J]. Process Saf. Environ. Protect., 2024,181:33-42. doi: 10.1016/j.psep.2023.10.065

    37. [37]

      SLAVINSKAYA E M, KIBIS L S, STONKUS O A, SVINTSITSKIY D A, STADNICHENKO A I, FEDOROVA E A, ROMANENKO A V, MARCHUK V, DORONKIN D E, BORONIN A I. The effects of platinum dispersion and Pt state on catalytic properties of Pt/Al2O3 in NH3 oxidation[J]. ChemCatChem, 2021,13(1):313-327. doi: 10.1002/cctc.202001320

    38. [38]

      LEE S M, LEE H H, SUNG C H. Influence of calcination temperature on Ce/TiO2 catalysis of selective catalytic oxidation of NH3 to N2[J]. Appl. Catal. A-Gen., 2014,470:189-198. doi: 10.1016/j.apcata.2013.10.057

    39. [39]

      QU Z P, WANG H, WANG S D, CHENG H, QIN Y, WANG Z. Role of the support on the behavior of Ag-based catalysts for NH3 selective catalytic oxidation (NH3-SCO)[J]. Appl. Surf. Sci., 2014,316:373-379. doi: 10.1016/j.apsusc.2014.08.023

    40. [40]

      ZHANG Q L, ZHANG T X, XIA F T, ZHANG Y Q, WANG H M, NING P. Promoting effects of acid enhancing on N2 selectivity for selectivity catalytic oxidation of NH3 over RuO/TiO2: The mechanism study[J]. Appl. Surf. Sci., 2020,500144044. doi: 10.1016/j.apsusc.2019.144044

  • 加载中
    1. [1]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    2. [2]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    3. [3]

      Jiayi Yang Jianxiu Hao Huacong Zhou Quansheng Liu . “Gorgeous Transformation” of Carbon Dioxide into Cyclic Carbonates: Catalyst Types and Roles. University Chemistry, 2026, 41(2): 178-189. doi: 10.12461/PKU.DXHX202502105

    4. [4]

      Chenyang WANGYiyan BAIWei ZHANGZhaorong LIUYuchun WANG . Performance of photo-assisted copper oxide catalyzed hydrolysis of ammonia borane to produce hydrogen. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 97-110. doi: 10.11862/CJIC.20250116

    5. [5]

      Wenruo NIHongpeng LIYun ZHANGYiran TIANJiehui RUIYingcheng TONGXiaolin PIZhenyan TANG . Research progress of ruthenium alloy catalysts in hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 23-44. doi: 10.11862/CJIC.20250188

    6. [6]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    7. [7]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    8. [8]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    9. [9]

      Wanping Chen . Construction of Knowledge Logic and Discovery through Reasoning: Summarizing the Reaction Patterns of Reactive Metals with Oxygen. University Chemistry, 2026, 41(2): 95-102. doi: 10.12461/PKU.DXHX202503108

    10. [10]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    11. [11]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    12. [12]

      Mei-Xia Yang Zhen-Hong He Long-Rui Wang You-Xing Yang . Route for Turning Waste CH4 and CO2 into Valuable Products: Reforming for Syngas. University Chemistry, 2026, 41(2): 197-207. doi: 10.12461/PKU.DXHX202503012

    13. [13]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    14. [14]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    15. [15]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    16. [16]

      Bolin Sun Jie Chen Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032

    17. [17]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    18. [18]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    19. [19]

      Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081

    20. [20]

      Qi Zhang Ziyu Liu Hongxia Tan Jun Tong Dazhen Xu . Research Progress on Direct Synthesis of β-Hydroxy Sulfones via Difunctionalization of Olefins. University Chemistry, 2025, 40(11): 199-209. doi: 10.12461/PKU.DXHX202412064

Metrics
  • PDF Downloads(9)
  • Abstract views(2884)
  • HTML views(319)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return