Citation: Qiaojia GUO, Junkai CAI, Chunying DUAN. Effects of anions on the structural regulation of Zn-salen-modified metal-organic cage[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(11): 2203-2211. doi: 10.11862/CJIC.20240209 shu

Effects of anions on the structural regulation of Zn-salen-modified metal-organic cage

  • Corresponding author: Chunying DUAN, cyduan@dlut.edu.cn
  • Received Date: 3 June 2024
    Revised Date: 5 July 2024

Figures(7)

  • By virtue of a 3∶1 complementary coordination strategy, a chiral heteroleptic metal-organic cage that contains divergent functional units, Pd-R(Zn), was precisely constructed via self-assembly of monodentate variational Znsalen ligands RZn and NADH (reduced nicotinamide adenine dinucleotide) mimic modified tridentate ligands with square-planar Pd ions. UV-Vis and luminescence spectra experiments reveal that different anions could selectively interact with different sites of Zn-salen modified metal-organic cages to achieve the structural regulation of cage compound, by using the differentiated host-guest electrostatic interactions of counter ions with metal-organic hosts. Compared to other anions, the presence of chloride ions caused the most significant fluorescence emission enhancement of Pd-R(Zn), meanwhile, the UV-Vis absorption band attributed to the salen aromatic backbone showed an absorption decrease, and the metal-to-ligand induced peak displayed a blue shift effect. Circular dichroism and 1H NMR spectra further demonstrate that the introduction of chloride anions is beneficial to keeping a more rigid scaffold.
  • 加载中
    1. [1]

      Goodey N M, Benkovic S J. Allosteric regulation and catalysis emerge via a common route[J]. Nat. Chem. Biol., 2008,4:474-482. doi: 10.1038/nchembio.98

    2. [2]

      Nussinov R, Tsai C J. Allostery in disease and in drug discovery[J]. Cell, 2013,153:293-305. doi: 10.1016/j.cell.2013.03.034

    3. [3]

      Cong Z Q, Shoji O, Kasai C, Kawakami N, Sugimoto H, Shiro Y, Watanabe Y. Activation of wild-type cytochrome P450BM3 by the next generation of decoy molecules: Enhanced hydroxylation of gaseous alkanes and crystallographic evidence[J]. ACS Catal., 2015,5:150-156. doi: 10.1021/cs501592f

    4. [4]

      Zhang Z, Li Y, Song B, Zhang Y, Jiang X, Wang M, Tumbleson R, Liu C L, Wang P S, Hao X Q, Rojas T, Ngo A T, Sessler J L, Newkome G R, Hla S W, Li X P. Intra- and intermolecular self-assembly of a 20-nm-wide supramolecular hexagonal grid[J]. Nat. Chem., 2020,12:468-474. doi: 10.1038/s41557-020-0454-z

    5. [5]

      Leigh D A, Pritchard R G, Stephens A J. A star of David catenane[J]. Nat. Chem., 2014,6:978-982. doi: 10.1038/nchem.2056

    6. [6]

      Marcos V, Stephens A J, Jaramillo-Garcia J, Nussbaumer A L, Woltering S L, Valero A, Lemonnier J F, Vitorica-Yrezabal I J, Leig D A. Allosteric initiation and regulation of catalysis with a molecular knot[J]. Science, 2016,352:1555-1559. doi: 10.1126/science.aaf3673

    7. [7]

      Liang L, Zhao W, Yang X J, Wu B. Anion-coordination-driven assembly[J]. Acc. Chem. Res., 2022,55:3218-3229. doi: 10.1021/acs.accounts.2c00435

    8. [8]

      Li S G, Jia C D, Wu B, Luo Q, Huang X J, Yang Z W, Li Q S, Yang X J. A triple anion helicate assembled from a bis(biurea) ligand and phosphate ions[J]. Angew. Chem. Int. Ed., 2011,50:5721-5724. doi: 10.1002/anie.201180593

    9. [9]

      Bai X M, Jia C D, Zhao Y X, Yang D, Wang S C, Li A Y, Chan Y T, Wang Y Y, Yang X J, Wu B. Peripheral templation-modulated interconversion between an A4L6 tetrahedral anion cage and A2L3 triple helicate with guest capture/release[J]. Angew. Chem. Int. Ed., 2018,57:1851-1855. doi: 10.1002/anie.201712080

    10. [10]

      Li B Y, Zhang W Y, Lu S, Zheng B, Zhang D, Li A Y, Li X P, Yang X J, Wu B. Multiple transformations among anion-based A2nL3n assemblies: Bicapped trigonal antiprism A8L12, tetrahedron A4L6, and triple helicate A2L3 (A=anion)[J]. J. Am. Chem. Soc., 2020,142:21160-21168. doi: 10.1021/jacs.0c10346

    11. [11]

      Xu C, Lin Q J, Shan C, Han X, Wang H, Wang H, Zhang W J, Chen Z, Guo C X, Xie Y H, Yu X J, Song B, Song H, Wojtas L, Li X P. Metallo-supramolecular octahedral cages with three types of chirality towards spontaneous resolution[J]. Angew. Chem. Int. Ed., 2022,61e202203099. doi: 10.1002/anie.202203099

    12. [12]

      Li Y G, Dong J Q, Gong W X, Tang X H, Liu Y H, Cui Y, Liu Y. Artificial biomolecular channels: Enantioselective transmembrane transport of amino acids mediated by homochiral zirconium metal-organic cages[J]. J. Am. Chem. Soc., 2021,143:20939-20951. doi: 10.1021/jacs.1c09992

    13. [13]

      Pan M, Wu K, Zhang J H, Su C Y. Chiral metal-organic cages/containers (MOCs): From structural and stereochemical design to applications[J]. Coord. Chem. Rev., 2019,378:333-349. doi: 10.1016/j.ccr.2017.10.031

    14. [14]

      Bierschenk S M, Pan J Y, Settineri N S, Warzok U, Bergman R G, Raymond K N, Toste F D. Impact of host flexibility on selectivity in a supramolecular host-catalyzed enantioselective aza-darzens reaction[J]. J. Am. Chem. Soc., 2022,144:11425-114331. doi: 10.1021/jacs.2c04182

    15. [15]

      Chen L J, Yang H B, Shionoya M. Chiral metallosupramolecular architectures[J]. Chem. Soc. Rev., 2017,46:2555-2576. doi: 10.1039/C7CS00173H

    16. [16]

      Schulte T R, Holstein J J, Clever G H. Chiral self-discrimination and guest recognition in helicene-based coordination cages[J]. Angew. Chem. Int. Ed., 2019,58:5562-5566. doi: 10.1002/anie.201812926

    17. [17]

      WU D Y, HUANG W, LI G, XIE L X, DUAN C Y, SUN Q Z, MENG Q J. Nickel helicates and hybrid silver coordination polymer: Design, synthesis and structure characterization[J]. Chinese J. Inorg. Chem., 2007,23(7):1129-1136. doi: 10.3321/j.issn:1001-4861.2007.07.001

    18. [18]

      XIE L X, WU D Y, DUAN C Y, ZHANG B G, MENG Q J. Helical assembly and chiral aggregations based on atropisomeric molecular clips[J]. Chinese J. Inorg. Chem., 2007,23(2):191-199. doi: 10.3321/j.issn:1001-4861.2007.02.001

    19. [19]

      Howlader P, Mondal S, Ahmed S, Mukherjee P S. Guest-induced enantioselective self-assembly of a Pd6 homochiral octahedral cage with a C3-symmetric pyridyl donor[J]. J. Am. Chem. Soc., 2020,142:20968-20972. doi: 10.1021/jacs.0c11011

    20. [20]

      Zhang D, Ronson T K, Greenfield J L, Brotin T, Berthault P, Léonce E, Zhu J L, Xu L, Nitschke J R. Enantiopure [Cs+/Xe⊂Cryptophane]⊂Fe4L4 hierarchical superstructures. J. Am. Chem. Soc., 2019, 141: 8339-8345

    21. [21]

      Li B Y, Zheng B, Zhang W Y, Zhang D, Yang X J, Wu B. Site-selective binding of peripheral chiral guests induces stereospecificity in A4L6 tetrahedral anion cages[J]. J. Am. Chem. Soc., 2020,142:6304-6311. doi: 10.1021/jacs.0c00882

    22. [22]

      Yeung C T, Yim K H, Wong H Y, Pal R, Lo W S, Yan S C, Wong M Y M, Yufit D, Smiles D E, McCormick L J, Teat S J, Shuh D K, Wong W T, Law G L. Chiral transcription in self-assembled tetrahedral Eu4L6 chiral cages displaying sizable circularly polarized luminescence[J]. Nat. Commun., 2017,81128. doi: 10.1038/s41467-017-01025-1

    23. [23]

      Zhou Y Y, Li H F, Zhu T Y, Gao T, Yan P F. A highly luminescent chiral tetrahedral Eu4L4(L')4 cage: Chirality induction, chirality memory, and circularly polarized luminescence[J]. J. Am. Chem. Soc., 2019,141:19634-19643. doi: 10.1021/jacs.9b07178

    24. [24]

      Tang X H, Jiang H, Si Y B, Rampal N, Gong W, Cheng Ch, Kang X, David F J, Cui Y, Liu Y. Endohedral functionalization of chiral metal-organic cages for encapsulating achiral dyes to induce circularly polarized luminescence[J]. Chem, 2021,7:2771-2786. doi: 10.1016/j.chempr.2021.07.017

    25. [25]

      Fiedler D, Leung D H, Bergman R G, Raymond K N. Enantioselective guest binding and dynamic resolution of cationic ruthenium complexes by a chiral metal-ligand assembly[J]. J. Am. Chem. Soc., 2004,126:3674-3675. doi: 10.1021/ja039225a

    26. [26]

      Xuan W M, Zhang M N, Liu Y, Chen Z J, Cui Y. A chiral quadruple-stranded helicate cage for enantioselective recognition and separation[J]. J. Am. Chem. Soc., 2012,134:6904-6907. doi: 10.1021/ja212132r

    27. [27]

      Zhao C, Toste F D, Raymond K N, Bergman R G. Nucleophilic substitution catalyzed by a supramolecular cavity proceeds with retention of absolute stereochemistry[J]. J. Am. Chem. Soc., 2014,136:14409-14412. doi: 10.1021/ja508799p

    28. [28]

      Wu K, Li K, Hou Y J, Mei Pan, Zhang L Y, Chen L, Su C Y. Homochiral D4-symmetric metal-organic cages from stereogenic Ru(Ⅱ) metalloligands for effective enantioseparation of atropisomeric molecules[J]. Nat. Commun., 2016,710487. doi: 10.1038/ncomms10487

    29. [29]

      Hou Y J, Wu K, Wei Z W, Li K, Lu Y L, Zhu C Y, Wang J S, Pan M, Jiang J J, Li G Q, Su C Y. Design and enantioresolution of homochiral Fe(Ⅱ)-Pd(Ⅱ) coordination cages from stereolabile metalloligands: Stereochemical stability and enantioselective separation[J]. J. Am. Chem. Soc., 2018,140:18183-18191. doi: 10.1021/jacs.8b11152

    30. [30]

      Nishioka Y, Yamaguchi T, Kawano M, Fujita M. Asymmetric [2+2] olefin cross photoaddition in a self-assembled host with remote chiral auxiliaries[J]. J. Am. Chem. Soc., 2008,130:8160-8161. doi: 10.1021/ja802818t

    31. [31]

      Li G, Yu W B, Ni J, Liu T F, Liu Y, Sheng E H, Cui Y. Self-assembly of a homochiral nanoscale metallacycle from a metallosalen complex for enantioselective separation[J]. Angew. Chem. Int. Ed., 2008,47:1245-1249. doi: 10.1002/anie.200704347

    32. [32]

      Guo J, Xu Y W, Li K, Xiao L M, Chen S, Wu K, Chen X D, Fan Y Z, Liu J M, Su C Y. Regio- and enantioselective photodimerization within the confined space of a homochiral ruthenium/palladium heterometallic coordination cage[J]. Angew. Chem. Int. Ed., 2017,56:3852-3856. doi: 10.1002/anie.201611875

    33. [33]

      Ji J C, Wu WH, Liang W T, Cheng G, Matsushita R, Yan Z Q, Wei X Q, Rao M, Yuan D Q, Fukuhara G, Mori T, Inoue Y, Yang C. An ultimate stereocontrol in supramolecular photochirogenesis: Photocyclodimerization of 2-anthracenecarboxylate mediated by sulfur-linked β-cyclodextrin dimers[J]. J. Am. Chem. Soc., 2019,141:9225-9238. doi: 10.1021/jacs.9b01993

    34. [34]

      Göhler B, Hamelbeck V, Markus T Z, Kettner M, Hanne G F, Vager Z, Naaman R, Zacharias H. Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA[J]. Science, 2011,331:894-897. doi: 10.1126/science.1199339

    35. [35]

      Kulkarni C, Mondal A K, Das T K, Grinbom G, Tassinari F, Mabesoone M F J, Meijer E W, Naaman R. Highly efficient and tunable filtering of electrons' spin by supramolecular chirality of nanofiber-based materials[J]. Adv. Mater., 2020,321904965. doi: 10.1002/adma.201904965

    36. [36]

      Mondal A K, Preuss M D, Ślęczkowski M L, Das T K, Vantomme G, Meijer E W, Naaman R. Spin filtering in supramolecular polymers assembled from achiral monomers mediated by chiral solvents[J]. J. Am. Chem. Soc., 2021,143:7189-7195. doi: 10.1021/jacs.1c02983

    37. [37]

      Wang Y, DuBois J L, Hedman B, Hodgson K O, Stack T D P. Catalytic galactose oxidase models: Biomimetic Cu(Ⅱ)-phenoxyl-radical reactivity[J]. Science, 1998,279:537-5401. doi: 10.1126/science.279.5350.537

    38. [38]

      Kim H J, Kim W, Lough A J, B. Kim M, Chin J. A cobalt(Ⅲ)-salen complex with an axial substituent in the diamine backbone: Stereoselective recognition of amino alcohols[J]. J. Am. Chem. Soc., 2005,127:16776-16777. doi: 10.1021/ja0557785

    39. [39]

      ZHANG Q L, WANG J Z, YANG X S, ZHU B X. Synthesis and crystal structure of Ni(Ⅱ)/Cu(Ⅱ)/Mn(Ⅲ) complexes with asymmetric salen ligand[J]. Chinese J. Inorg. Chem., 2020,36(1):132-138.  

    40. [40]

      Shaw S, White J D. Asymmetric catalysis using chiral salen-metal complexes: Recent advances[J]. Chem. Rev., 2019,119:9381-9426. doi: 10.1021/acs.chemrev.9b00074

    41. [41]

      Yuan Y C, Mellah M, Schulz E, David O R P. Making chiral salen complexes work with organocatalysts[J]. Chem. Rev., 2022,122:8841-8883. doi: 10.1021/acs.chemrev.1c00912

    42. [42]

      ZOU X C, SHI K Y, WANG C, DENG C F, REN Y R, WANG G F, TAN Z W, FU X K. Immobilization of chiral Mn(salen) on phenoxyl group modified zirconium poly (styrene-isopropenyl phosphonate)-phosphate and catalytic performance for epoxidation of styrene. Chinese J. Inorg. Chem., 2016, 32(9): 1585-1595

    43. [43]

      LUO Y F, FU X K, ZOU X C, WANG C W, HU X Y, JIA Z Y, ZHANG H Z. Effect of axial linker group on heterogeneous chiral salen Mn(Ⅲ) catalyzed enantioselective epoxidation of unfunctionalized olefins[J]. Chinese J. Inorg. Chem., 2011,27(7):1302-1308.

    44. [44]

      Cai J K, Zhao L, Li Y N, He C, Wang C, Duan C Y. Binding of dual-function hybridized metal-organic capsules to enzymes for cascade catalysis[J]. JACS Au, 2022,2:1736-1746. doi: 10.1021/jacsau.2c00322

    45. [45]

      Preston D, Inglis A R, Garden A L, Kruger P E. A symmetry interaction approach to [M2L2]4+ metallocycles and their self-catenation[J]. Chem. Commun., 2019,55:13271-13274. doi: 10.1039/C9CC07130J

    46. [46]

      Kurahashi T, Hada M, Fujii H. Critical role of external axial ligands in chirality amplification of trans-cyclohexane-1, 2-diamine in salen complexes[J]. J. Am. Chem. Soc., 2009,131:12394-12405. doi: 10.1021/ja904635n

    47. [47]

      Spenst P, Würthner F. A perylene bisimide cyclophane as a "turn-on" and "turn-off" fluorescence probe[J]. Angew. Chem. Int. Ed., 2015,54:10165-10168. doi: 10.1002/anie.201503542

    48. [48]

      He C, Lin Z H, He Z, Duan C Y, Xu C H, Wang Z M, Yan C H. Metal-tunable nanocages as artificial chemosensors[J]. Angew. Chem. Int. Ed., 2008,47:877-881. doi: 10.1002/anie.200704206

    49. [49]

      Lu Y L, Qin Y H, Zheng S P, Ruan J, Huang Y H, Zhang X D, Liu C H, Hu P, Xu H S, Su C Y. Anion-mediated allosteric catalysis of [2+2] photocycloaddition based on a flexible metallo-amine cage for high diastereoselectivity[J]. ACS Catal., 2024,14:94-103. doi: 10.1021/acscatal.3c04593

  • 加载中
    1. [1]

      Yu-Yao LiXiao-Hui LiZhi-Xuan AnYang ChuXiu-Li Wang . Room-temperature olefin epoxidation reaction by two 2D cobalt metal-organic complexes under O2 atmosphere: Coordination and structural regulation. Chinese Chemical Letters, 2025, 36(4): 109716-. doi: 10.1016/j.cclet.2024.109716

    2. [2]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    3. [3]

      Yinghui Xia Yixi Lin Zhenming Xu . Cation potential guiding structural regulation of lithium halide superionic conductors. Chinese Journal of Structural Chemistry, 2025, 44(3): 100448-100448. doi: 10.1016/j.cjsc.2024.100448

    4. [4]

      Jie YangXin-Yue LouDihua DaiJingwei ShiYing-Wei Yang . Desymmetrized pillar[8]arenes: High-yield synthesis, functionalization, and host-guest chemistry. Chinese Chemical Letters, 2025, 36(1): 109818-. doi: 10.1016/j.cclet.2024.109818

    5. [5]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2024.100335

    6. [6]

      Cheng HeRenlan HuangLingling WeiQiuhui HeJinbo LiuJiao ChenGe GaoCheng YangWanhua Wu . Uncovering the mask of sensitizers to switch on the TTA-UC emission by supramolecular host-guest complexation. Chinese Chemical Letters, 2025, 36(4): 110103-. doi: 10.1016/j.cclet.2024.110103

    7. [7]

      Lei ShenYang ZhangLinlin ZhangChuanwang LiuZhixian MaKangjiang LiangChengfeng Xia . Phenylhydrazone anions excitation for the photochemical carbonylation of aryl iodides with aldehydes. Chinese Chemical Letters, 2024, 35(4): 108742-. doi: 10.1016/j.cclet.2023.108742

    8. [8]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    9. [9]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    10. [10]

      Lin Peng Xincheng Liang Zelong Sun Xingfa Chen Dexin Meng Renshu Huang Qian Liu Huan Wen Shibin Yin . Microenvironment regulation of anode-electrolyte interface enables highly stable Zn anodes. Chinese Journal of Structural Chemistry, 2025, 44(4): 100542-100542. doi: 10.1016/j.cjsc.2025.100542

    11. [11]

      Zhibin RenShan LiXiaoying LiuGuanghao LvLei ChenJingli WangXingyi LiJiaqing Wang . Penetrating efficiency of supramolecular hydrogel eye drops: Electrostatic interaction surpasses ligand-receptor interaction. Chinese Chemical Letters, 2024, 35(11): 109629-. doi: 10.1016/j.cclet.2024.109629

    12. [12]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    13. [13]

      Rong-Nan YiWei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194

    14. [14]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    15. [15]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    16. [16]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    17. [17]

      Genlin SunYachun LuoZhihong YanHongdeng QiuWeiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787

    18. [18]

      Guoying Han Qazi Mohammad Junaid Xiao Feng . Topology-driven directed synthesis of metal-organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100447-100447. doi: 10.1016/j.cjsc.2024.100447

    19. [19]

      Cheng WangJi WangDong LiuZhi-Ling Zhang . Advances in virus-host interaction research based on microfluidic platforms. Chinese Chemical Letters, 2024, 35(12): 110302-. doi: 10.1016/j.cclet.2024.110302

    20. [20]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

Metrics
  • PDF Downloads(2)
  • Abstract views(267)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return