Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands
- Corresponding author: Xufeng LIU, nkxfliu@126.com
Citation:
Linjie ZHU, Xufeng LIU. Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(2): 321-328.
doi:
10.11862/CJIC.20240207
ESSWEIN A J, NOCERA D G. Hydrogen production by molecular photocatalysis[J]. Chem. Rev., 2007,107(10):4022-4047. doi: 10.1021/cr050193e
DU P W, EISENBERG R. Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: Recent progress and future challenges[J]. Energy Environ. Sci., 2012,5(3):6012-6021. doi: 10.1039/c2ee03250c
ZHANG W, XU R. Hybrid photocatalytic H2 evolution systems containing xanthene dyes and inorganic nickel based catalysts[J]. Int. J. Hydrogen Energ., 2012,37(23):17899-17909. doi: 10.1016/j.ijhydene.2012.08.150
LV H J, RUBERU T P A, FLEISCHAUER V E, BRENNESSEL W W, NEIDIG M L, EISENBERG R. Catalytic light-driven generation of hydrogen from water by iron dithiolene complexes[J]. J. Am. Chem. Soc., 2016,138(36):11654-11663. doi: 10.1021/jacs.6b05040
LI G C, MARK M F, LV H J, McCAMANT D W, EISENBERG R. Rhodamine-platinum diimine dithiolate complex dyads as efficient and robust photosensitizers for light-driven aqueous proton reduction to hydrogen[J]. J. Am. Chem. Soc., 2018,140(7):2575-2586. doi: 10.1021/jacs.7b11581
DU P W, KNOWLES K, EISENBERG R. A homogeneous system for the photogeneration of hydrogen from water based on a platinum (Ⅱ) terpyridyl acetylide chromophore and a molecular cobalt catalyst[J]. J. Am. Chem. Soc., 2008,130(38):12576-12577. doi: 10.1021/ja804650g
LAZARIDES T, McCORMICK T, DU P W, LUO G G, LINDLEY B, EISENBERG R. Making hydrogen from water using a homogeneous system without noble metals[J]. J. Am. Chem. Soc., 2009,131(26):9192-9194. doi: 10.1021/ja903044n
CAO M, LIU R H, WANG D W, WANG Z X, YANG L F, LIU Y, XU S, CUI J L, ZHANG S X, DAI X. Synthesis and photocatalytic activity of two different hydrogenase models based on DMAEMA copolymer structure[J]. Inorg. Chim. Acta, 2023,546121293. doi: 10.1016/j.ica.2022.121293
HAN Z J, QIU F, EISENBERG R, HOLLAND P L, KRAUSS T D. Robust photogeneration of H2 in water using semiconductor nanocrys-tals and a nickel catalyst[J]. Science, 2012,338(6112):1321-1324. doi: 10.1126/science.1227775
HELM M L, STEWART M P, BULLOCK R M, DUBOIS M R, DUBOIS D L. A synthetic nickel electrocatalyst with a turnover frequency above 100, 000 s-1 for H2 production[J]. Science, 2011,333(6044):863-866. doi: 10.1126/science.1205864
LUBITZ W, OGATA H, RÜDIGER O, REIJERSE E. Hydrogenases[J]. Chem. Rev., 2014,114(8):4081-4148. doi: 10.1021/cr4005814
TARD C, PICKETT C J. Structural and functional analogues of the active sites of the[Fe]-, [NiFe]-, and[FeFe]-hydrogenases[J]. Chem. Rev., 2009,109(6):2245-2274. doi: 10.1021/cr800542q
FREY M. Hydrogenases: Hydrogen-activating enzymes[J]. ChemBio-Chem, 2002,3(2-3):153-160. doi: 10.1002/1439-7633(20020301)3:2/3<153::AID-CBIC153>3.0.CO;2-B
PETERS J W, LANZILOTTA W N, LEMON B J, SEEFELDT L C. X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium Pasteurianum to 1.8 angstrom resolution[J]. Science, 1998,282(5395):1853-1858. doi: 10.1126/science.282.5395.1853
NICOLET Y, PIRAS C, LEGRAND P, HATCHIKIAN C E, FONTECILLA-CAMPS J C. Desulfovibrio Desulfuricans iron hydrogenase: The structure shows unusual coordination to an active site Fe binuclear center[J]. Structure, 1999,7(1):13-23. doi: 10.1016/S0969-2126(99)80005-7
LYON E J, GEORGAKAKI I P, REIBENSPIES J H, DARENSBOURG M Y. Carbon monoxide and cyanide ligands in a classical organome-tallic complex model for Fe-only hydrogenase[J]. Angew. Chem.-Int. Edit., 1999,38(21):3178-3180. doi: 10.1002/(SICI)1521-3773(19991102)38:21<3178::AID-ANIE3178>3.0.CO;2-4
LAWRENCE J D, LI H X, RAUCHFUSS T B, BÉNARD M, ROHMER M M. Diiron azadithiolates as models for the iron-only hydrogenase active site: Synthesis, structure, and stereoelectronics[J]. Angew. Chem.-Int. Edit., 2001,40(9):1768-1771. doi: 10.1002/1521-3773(20010504)40:9<1768::AID-ANIE17680>3.0.CO;2-E
GEORGE S J, CUI Z, RAZAVET M, PICKETT C J. The di-iron subsite of all-iron hydrogenase: mechanism of cyanation of a synthetic{2Fe3S}-carbonyl assembly[J]. Chem.-Eur. J., 2002,8(17):4037-4046. doi: 10.1002/1521-3765(20020902)8:17<4037::AID-CHEM4037>3.0.CO;2-O
JIANG S, LIU J H, SHI Y, WANG Z, ÅKERMARK B, SUM L C. Fe-S complexes containing five-membered heterocycles: Novel models for the active site of hydrogenases with unusual low reduction potential[J]. Dalton Trans., 2007:896-902.
HOGARTH G. An unexpected leading role for[Fe2(CO)6(μ-pdt)] in our understanding of[FeFe]-H2ases and the search for clean hydrogen production[J]. Coord. Chem. Rev., 2023,490215174. doi: 10.1016/j.ccr.2023.215174
GAO W M, EKSTRÖM J, LIU J H, CHEN C N, ERIKSSON L, WENG L H, ÅKERMARK B, SUN L C. Binuclear iron-sulfur complexes with bidentate phosphine ligands as active site models of Fe-hydrogenase and their catalytic proton reduction[J]. Inorg. Chem., 2007,46(6):1981-1991. doi: 10.1021/ic0610278
ZHANG Q Q, DICKSON R S, FALLON G D, MAYADUNNE R. A comparison of the reactions of pentacarbonyliron with cyclic thioethers and related dialkyl sulfides[J]. J. Organomet. Chem., 2001,627(2):201-205. doi: 10.1016/S0022-328X(01)00733-1
CHEN F Y, HE J, YU X Y, WANG Z, MU C, LIU X F, LI Y L, JIANG Z Q, WU H K. Electrocatalytic properties of diiron ethanedi-thiolate complexes containing benzoate ester[J]. Appl. Organomet. Chem., 2018,32(12)e4549. doi: 10.1002/aoc.4549
BAI S F, MA J W, GUO Y N, DU X M, WANG Y L, LI Q L, LÜ S. Aminophosphine-substituted Fe/E (E=S, Se) carbonyls related to[FeFe]-hydrogenases: Synthesis, protonation, and electrocatalytic proton reduction[J]. J. Mol. Struct., 2023,1283135287. doi: 10.1016/j.molstruc.2023.135287
YAN L, HU K, LIU X F, LI Y L, LIU X H, JIANG Z Q. Diiron ethane-1, 2-dithiolate complexes with 1, 2, 3-thiadiazole moiety: Synthesis, X-ray crystal structures, electrochemistry and fungicidal activity[J]. Appl. Organomet. Chem., 2021,35(2)e6084. doi: 10.1002/aoc.6084
LIU X F, XU B, XU H, LI Y L. Synthesis, characterization, and electrocatalytic hydrogen evolution of diiron dithiolato pentacarbonyl complexes bearing phosphine ligand[J]. Chinese J. Inorg. Chem., 2023,39(8):1619-1627.
ORTAN G R F, GHOSH S, ALKER L, SARKER J C, PUGH D, RICHMOND M G, HARTL F, HOGARTH G. Biomimics of[FeFe]-hydrogenases incorporating redox-active ligands: Synthesis, redox properties and spectroelectrochemistry of diiron-dithiolate complexes with ferrocenyl-diphosphines as Fe4S4 surrogates[J]. Dalton Trans., 2022,51(25):9748-9769. doi: 10.1039/D2DT00419D
ZHAO P H, MA Z Y, HU M Y, HE J, WANG Y Z, JING X B, CHEN H Y, LI Y L. PNP-Chelated and-bridged diiron dithiolate complexes Fe2(μ-pdt)(CO)4{(Ph2P)2NR} together with related monophosphine complexes for the[2Fe]H subsite of[FeFe]-hydrogenases: preparation, structure, and electrocatalysis[J]. Organometallics, 2018,37(8):1280-1290. doi: 10.1021/acs.organomet.8b00030
ZHAO P H, HU M Y, LI J R, MA Z Y, WANG Y Z, HE J, LI Y L, LIU X F. Influence of dithiolate bridges on the structures and electrocatalytic performance of small bite-angle PNP-chelated diiron complexes Fe2(μ-xdt)(CO)4{κ2-(Ph2P)2NR} related to[FeFe]-hydroge-nases[J]. Organometallics, 2019,38(2):385-394. doi: 10.1021/acs.organomet.8b00759
LIU X F, XU B, XU H, LI Y L. Diiron butane-1, 2-dithiolate complexes with phosphine ligands: preparation, crystal structures, and electrochemical catalytic performance[J]. Chinese J. Inorg. Chem., 2022,38(12):2521-2529. doi: 10.11862/CJIC.2022.245
LIU X F, WANG S J, ZHAO P H. Di-iron dithiolato complexes with 3-bromothiophene moiety: Preparation, structures, and electrochemistry[J]. J. Mol. Struct., 2023,1294136454. doi: 10.1016/j.molstruc.2023.136454
BAI S F, DU X M, TIAN W J, XU H, ZHANG R F, MA C L, WANG Y L, LÜ S, LI Q L, LI Y L. Di-, tri-and tetraphosphine-substituted Fe/Se carbonyls: Synthesis, characterization and electrochemical properties[J]. Dalton Trans., 2022,51(29):11125-11134. doi: 10.1039/D2DT01376B
YAN L, YANG J, LÜ S, LIU X F, LI Y L, LIU X H, JIANG Z Q. Phosphine-containing diiron propane-1, 2-dithiolate derivatives: Synthesis, spectroscopy, X-ray crystal structures, and electrochemistry[J]. Catal. Lett., 2021,151(7):1857-1867. doi: 10.1007/s10562-020-03450-2
LIU X F, YIN B S. Synthesis and structural characterization of diiron propanedithiolate complex[(μ-PDT) Fe2(CO)5]2[(η5-Ph2PC5H4)2Fe] containing a bidentate phosphine ligand 1, 1'-bis (diphenylphosphino) ferrocene[J]. J. Coord. Chem., 2010,63(23):4061-4067. doi: 10.1080/00958972.2010.531715
LIU X F, JIANG Z Q, JIA Z J. Synthesis, characterization and crystal structures of tetrairon ethanedithiolate complexes containing bridging bidentate phosphine ligands[J]. Polyhedron, 2012,33(1):166-170. doi: 10.1016/j.poly.2011.11.032
LIU X F. Synthesis and structures of diiron dithiolate complexes with 1, 2-bis (diphenylphosphino) acetylene or tris (2-methoxyphenyl) phosphine[J]. Polyhedron, 2016,117:672-678. doi: 10.1016/j.poly.2016.07.009
LI R X, LIU X F, LIU T, YIN Y B, ZOU Y, MEI S K, YAN J. Electrocatalytic properties of[FeFe]-hydrogenases models and visible-light-driven hydrogen evolution efficiency promotion with porphyrin functionalized graphene nanocomposite[J]. Electrochim. Acta, 2017,237:207-216. doi: 10.1016/j.electacta.2017.03.216
JIN B, TAN X, ZHANG X X, WANG Z Y, QU Y P, HE Y B, HU T P, ZHAO P H. Substituent effects in carbon-nanotube-supported diiron monophosphine complexes for hydrogen evolution reaction[J]. Electrochim. Acta, 2022,434141325. doi: 10.1016/j.electacta.2022.141325
DEY S, RANA A, DEY S G, DEY A. Electrochemical hydrogen production in acidic water by an azadithiolate bridged synthetic hydro-genese mimic: Role of aqueous solvation in lowering overpotential[J]. ACS Catal., 2013,3(3):429-436. doi: 10.1021/cs300835a
AHMED M E, DEY S, MONDAL B, DEY A. H2 evolution catalyzed by a FeFe-hydrogenase synthetic model covalently attached to graphite surfaces[J]. Chem. Commun., 2017,53(58):8188-8191. doi: 10.1039/C7CC04281G
CHONG D, GEORGAKAKI I P, MEJIA-RODRIGUEZ R, SANABRIA-CHINCHILLA J, SORIAGA M P, DARENSBOURG M Y. Electrocatalysis of hydrogen production by active site analogues of the iron hydrogenase enzyme: Structure/function relationships[J]. Dalton Trans., 2003,4158-4163.
DONOVAN E S, NICHOL G S, FELTON G A N. Structural effects upon the durability of hydrogenase-inspired hydrogen-producing electrocatalysts: Variations in the (μ-edt)[Fe2(CO)6] system[J]. J. Organomet. Chem., 2013,726:9-13. doi: 10.1016/j.jorganchem.2012.12.006
GLOAGUEN F, LAWRENCE J D, RAUCHFUSS T B. Biomimetic hydrogen evolution catalyzed by an iron carbonyl thiolate[J]. J. Am. Chem. Soc., 2001,123(38):9476-9477. doi: 10.1021/ja016516f
LÜ S, BAI S F, GAO X P, WANG Y L, LI Q L. Aminodiphosphine substituted 2Fe2Se complex as new precursor to single and double butterfly Fe/Se models related to FeFe hydrogenase models[J]. J. Mol. Struct., 2023,1290135939. doi: 10.1016/j.molstruc.2023.135939
LI Z M, XIAO Z Y, XU F F, ZENG X H, LIU X M. Enhancement in catalytic proton reduction by an internal base in a diiron pentacarbonyl complex: Its synthesis, characterisation, interconversion and electrochemical investigation[J]. Dalton Trans., 2017,46(6):1864-1871. doi: 10.1039/C6DT04409C
ZHONG W, WU L, JIANG W D, LI Y L, MOOKAN N, LIU X M. Proton-coupled electron transfer in the reduction of diiron hexacarbonyl complexes and its enhancement on the electrocatalytic reduction of protons by a pendant basic group[J]. Dalton Trans., 2019,48(36):13711-13718. doi: 10.1039/C9DT02058F
XIAO Z Y, ZHONG W, LIU X M. Recent developments in electrochemical investigations into iron carbonyl complexes relevant to the iron centres of hydrogenases[J]. Dalton Trans., 2022,51(1):40-47. doi: 10.1039/D1DT02705K
LIU X F, LI Y L, LIU X H. Synthesis, characterization, electrocata-lytic properties, and antifungal activity of isoxazole-containing di-iron complexes[J]. Chinese J. Inorg. Chem., 2023,39(12):2367-2376. doi: 10.11862/CJIC.2023.204
LIU X F, LI Y L, LIU X H. Heterocyclic pyrazole-containing diiron dithiolato analogues: Synthesis, characterization, electrochemistry, and fungicidal activity[J]. Appl. Organomet. Chem., 2022,36(11)e6884. doi: 10.1002/aoc.6884
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
Changqing MIAO , Fengjiao CHEN , Wenyu LI , Shujie WEI , Yuqing YAO , Keyi WANG , Ni WANG , Xiaoyan XIN , Ming FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192
Jing WU , Puzhen HUI , Huilin ZHENG , Pingchuan YUAN , Chunfei WANG , Hui WANG , Xiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
Xinting XIONG , Zhiqiang XIONG , Panlei XIAO , Xuliang NIE , Xiuying SONG , Xiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145
Jingjing QING , Fan HE , Zhihui LIU , Shuaipeng HOU , Ya LIU , Yifan JIANG , Mengting TAN , Lifang HE , Fuxing ZHANG , Xiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
Yan Liu , Yuexiang Zhu , Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084
Xiaowei TANG , Shiquan XIAO , Jingwen SUN , Yu ZHU , Xiaoting CHEN , Haiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173
Weina Wang , Fengyi Liu , Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029
Junqiao Zhuo , Xinchen Huang , Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100
Wenyan Dan , Weijie Li , Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014
Jinfeng Chu , Lan Jin , Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
Yongzhi LI , Han ZHANG , Gangding WANG , Yanwei SUI , Lei HOU , Yaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307
Zhaoyang WANG , Chun YANG , Yaoyao Song , Na HAN , Xiaomeng LIU , Qinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114
Liyang ZHANG , Dongdong YANG , Ning LI , Yuanyu YANG , Qi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079
Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003
Hongwei Ma , Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035