Citation: Linjie ZHU, Xufeng LIU. Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207 shu

Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands

  • Corresponding author: Xufeng LIU, nkxfliu@126.com
  • Received Date: 2 June 2024
    Revised Date: 28 September 2024

Figures(6)

  • Two tetra-iron complexes with bridging diphosphine ligands, named [Fe4(CO)10(μ-SCH2CH(CH3)S)2(dppa)] (1) and [Fe4(CO)10(μ-SCH2CH(CH3)S)2(trans-dppv)] (2), where dppa=bis(diphenylphosphino)acetylene and trans-dppv= trans-1, 2-bis(diphenylphosphino)ethylene, were prepared by the reaction of complex [Fe2(CO)6(μ-SCH2CH(CH3)S)] with dppa or trans-dppv. Both complexes were structurally identified by elemental analysis, FTIR spectra, 1H NMR, and 31P NMR, together with single-crystal X-ray diffraction analysis. X-ray crystallographic studies revealed that complex 1 consists of two di-iron propane-1, 2-dithiolate pentacarbonyl sub-units connected by a linear dppa ligand whereas a zigzag trans-dppv ligand is found in complex 2. The electrochemical properties were probed by cyclic voltammetry, showing that two irreversible reductions and one irreversible oxidation were found for both complexes. Furthermore, electrocatalytic studies were carried out by adding acetic acid as a proton source into the solution. The results demonstrated that both complexes can catalyze proton reduction to evolve hydrogen. For comparison, the catalytic efficiency of complex 2 was better than complex 1.
  • 加载中
    1. [1]

      ESSWEIN A J, NOCERA D G. Hydrogen production by molecular photocatalysis[J]. Chem. Rev., 2007,107(10):4022-4047. doi: 10.1021/cr050193e

    2. [2]

      DU P W, EISENBERG R. Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: Recent progress and future challenges[J]. Energy Environ. Sci., 2012,5(3):6012-6021. doi: 10.1039/c2ee03250c

    3. [3]

      ZHANG W, XU R. Hybrid photocatalytic H2 evolution systems containing xanthene dyes and inorganic nickel based catalysts[J]. Int. J. Hydrogen Energ., 2012,37(23):17899-17909. doi: 10.1016/j.ijhydene.2012.08.150

    4. [4]

      LV H J, RUBERU T P A, FLEISCHAUER V E, BRENNESSEL W W, NEIDIG M L, EISENBERG R. Catalytic light-driven generation of hydrogen from water by iron dithiolene complexes[J]. J. Am. Chem. Soc., 2016,138(36):11654-11663. doi: 10.1021/jacs.6b05040

    5. [5]

      LI G C, MARK M F, LV H J, McCAMANT D W, EISENBERG R. Rhodamine-platinum diimine dithiolate complex dyads as efficient and robust photosensitizers for light-driven aqueous proton reduction to hydrogen[J]. J. Am. Chem. Soc., 2018,140(7):2575-2586. doi: 10.1021/jacs.7b11581

    6. [6]

      DU P W, KNOWLES K, EISENBERG R. A homogeneous system for the photogeneration of hydrogen from water based on a platinum (Ⅱ) terpyridyl acetylide chromophore and a molecular cobalt catalyst[J]. J. Am. Chem. Soc., 2008,130(38):12576-12577. doi: 10.1021/ja804650g

    7. [7]

      LAZARIDES T, McCORMICK T, DU P W, LUO G G, LINDLEY B, EISENBERG R. Making hydrogen from water using a homogeneous system without noble metals[J]. J. Am. Chem. Soc., 2009,131(26):9192-9194. doi: 10.1021/ja903044n

    8. [8]

      CAO M, LIU R H, WANG D W, WANG Z X, YANG L F, LIU Y, XU S, CUI J L, ZHANG S X, DAI X. Synthesis and photocatalytic activity of two different hydrogenase models based on DMAEMA copolymer structure[J]. Inorg. Chim. Acta, 2023,546121293. doi: 10.1016/j.ica.2022.121293

    9. [9]

      HAN Z J, QIU F, EISENBERG R, HOLLAND P L, KRAUSS T D. Robust photogeneration of H2 in water using semiconductor nanocrys-tals and a nickel catalyst[J]. Science, 2012,338(6112):1321-1324. doi: 10.1126/science.1227775

    10. [10]

      HELM M L, STEWART M P, BULLOCK R M, DUBOIS M R, DUBOIS D L. A synthetic nickel electrocatalyst with a turnover frequency above 100, 000 s-1 for H2 production[J]. Science, 2011,333(6044):863-866. doi: 10.1126/science.1205864

    11. [11]

      LUBITZ W, OGATA H, RÜDIGER O, REIJERSE E. Hydrogenases[J]. Chem. Rev., 2014,114(8):4081-4148. doi: 10.1021/cr4005814

    12. [12]

      TARD C, PICKETT C J. Structural and functional analogues of the active sites of the[Fe]-, [NiFe]-, and[FeFe]-hydrogenases[J]. Chem. Rev., 2009,109(6):2245-2274. doi: 10.1021/cr800542q

    13. [13]

      FREY M. Hydrogenases: Hydrogen-activating enzymes[J]. ChemBio-Chem, 2002,3(2-3):153-160. doi: 10.1002/1439-7633(20020301)3:2/3<153::AID-CBIC153>3.0.CO;2-B

    14. [14]

      PETERS J W, LANZILOTTA W N, LEMON B J, SEEFELDT L C. X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium Pasteurianum to 1.8 angstrom resolution[J]. Science, 1998,282(5395):1853-1858. doi: 10.1126/science.282.5395.1853

    15. [15]

      NICOLET Y, PIRAS C, LEGRAND P, HATCHIKIAN C E, FONTECILLA-CAMPS J C. Desulfovibrio Desulfuricans iron hydrogenase: The structure shows unusual coordination to an active site Fe binuclear center[J]. Structure, 1999,7(1):13-23. doi: 10.1016/S0969-2126(99)80005-7

    16. [16]

      LYON E J, GEORGAKAKI I P, REIBENSPIES J H, DARENSBOURG M Y. Carbon monoxide and cyanide ligands in a classical organome-tallic complex model for Fe-only hydrogenase[J]. Angew. Chem.-Int. Edit., 1999,38(21):3178-3180. doi: 10.1002/(SICI)1521-3773(19991102)38:21<3178::AID-ANIE3178>3.0.CO;2-4

    17. [17]

      LAWRENCE J D, LI H X, RAUCHFUSS T B, BÉNARD M, ROHMER M M. Diiron azadithiolates as models for the iron-only hydrogenase active site: Synthesis, structure, and stereoelectronics[J]. Angew. Chem.-Int. Edit., 2001,40(9):1768-1771. doi: 10.1002/1521-3773(20010504)40:9<1768::AID-ANIE17680>3.0.CO;2-E

    18. [18]

      GEORGE S J, CUI Z, RAZAVET M, PICKETT C J. The di-iron subsite of all-iron hydrogenase: mechanism of cyanation of a synthetic{2Fe3S}-carbonyl assembly[J]. Chem.-Eur. J., 2002,8(17):4037-4046. doi: 10.1002/1521-3765(20020902)8:17<4037::AID-CHEM4037>3.0.CO;2-O

    19. [19]

      JIANG S, LIU J H, SHI Y, WANG Z, ÅKERMARK B, SUM L C. Fe-S complexes containing five-membered heterocycles: Novel models for the active site of hydrogenases with unusual low reduction potential[J]. Dalton Trans., 2007:896-902.

    20. [20]

      HOGARTH G. An unexpected leading role for[Fe2(CO)6(μ-pdt)] in our understanding of[FeFe]-H2ases and the search for clean hydrogen production[J]. Coord. Chem. Rev., 2023,490215174. doi: 10.1016/j.ccr.2023.215174

    21. [21]

      GAO W M, EKSTRÖM J, LIU J H, CHEN C N, ERIKSSON L, WENG L H, ÅKERMARK B, SUN L C. Binuclear iron-sulfur complexes with bidentate phosphine ligands as active site models of Fe-hydrogenase and their catalytic proton reduction[J]. Inorg. Chem., 2007,46(6):1981-1991. doi: 10.1021/ic0610278

    22. [22]

      ZHANG Q Q, DICKSON R S, FALLON G D, MAYADUNNE R. A comparison of the reactions of pentacarbonyliron with cyclic thioethers and related dialkyl sulfides[J]. J. Organomet. Chem., 2001,627(2):201-205. doi: 10.1016/S0022-328X(01)00733-1

    23. [23]

      CHEN F Y, HE J, YU X Y, WANG Z, MU C, LIU X F, LI Y L, JIANG Z Q, WU H K. Electrocatalytic properties of diiron ethanedi-thiolate complexes containing benzoate ester[J]. Appl. Organomet. Chem., 2018,32(12)e4549. doi: 10.1002/aoc.4549

    24. [24]

      BAI S F, MA J W, GUO Y N, DU X M, WANG Y L, LI Q L, LÜ S. Aminophosphine-substituted Fe/E (E=S, Se) carbonyls related to[FeFe]-hydrogenases: Synthesis, protonation, and electrocatalytic proton reduction[J]. J. Mol. Struct., 2023,1283135287. doi: 10.1016/j.molstruc.2023.135287

    25. [25]

      YAN L, HU K, LIU X F, LI Y L, LIU X H, JIANG Z Q. Diiron ethane-1, 2-dithiolate complexes with 1, 2, 3-thiadiazole moiety: Synthesis, X-ray crystal structures, electrochemistry and fungicidal activity[J]. Appl. Organomet. Chem., 2021,35(2)e6084. doi: 10.1002/aoc.6084

    26. [26]

      LIU X F, XU B, XU H, LI Y L. Synthesis, characterization, and electrocatalytic hydrogen evolution of diiron dithiolato pentacarbonyl complexes bearing phosphine ligand[J]. Chinese J. Inorg. Chem., 2023,39(8):1619-1627.

    27. [27]

      ORTAN G R F, GHOSH S, ALKER L, SARKER J C, PUGH D, RICHMOND M G, HARTL F, HOGARTH G. Biomimics of[FeFe]-hydrogenases incorporating redox-active ligands: Synthesis, redox properties and spectroelectrochemistry of diiron-dithiolate complexes with ferrocenyl-diphosphines as Fe4S4 surrogates[J]. Dalton Trans., 2022,51(25):9748-9769. doi: 10.1039/D2DT00419D

    28. [28]

      ZHAO P H, MA Z Y, HU M Y, HE J, WANG Y Z, JING X B, CHEN H Y, LI Y L. PNP-Chelated and-bridged diiron dithiolate complexes Fe2(μ-pdt)(CO)4{(Ph2P)2NR} together with related monophosphine complexes for the[2Fe]H subsite of[FeFe]-hydrogenases: preparation, structure, and electrocatalysis[J]. Organometallics, 2018,37(8):1280-1290. doi: 10.1021/acs.organomet.8b00030

    29. [29]

      ZHAO P H, HU M Y, LI J R, MA Z Y, WANG Y Z, HE J, LI Y L, LIU X F. Influence of dithiolate bridges on the structures and electrocatalytic performance of small bite-angle PNP-chelated diiron complexes Fe2(μ-xdt)(CO)4{κ2-(Ph2P)2NR} related to[FeFe]-hydroge-nases[J]. Organometallics, 2019,38(2):385-394. doi: 10.1021/acs.organomet.8b00759

    30. [30]

      LIU X F, XU B, XU H, LI Y L. Diiron butane-1, 2-dithiolate complexes with phosphine ligands: preparation, crystal structures, and electrochemical catalytic performance[J]. Chinese J. Inorg. Chem., 2022,38(12):2521-2529. doi: 10.11862/CJIC.2022.245

    31. [31]

      LIU X F, WANG S J, ZHAO P H. Di-iron dithiolato complexes with 3-bromothiophene moiety: Preparation, structures, and electrochemistry[J]. J. Mol. Struct., 2023,1294136454. doi: 10.1016/j.molstruc.2023.136454

    32. [32]

      BAI S F, DU X M, TIAN W J, XU H, ZHANG R F, MA C L, WANG Y L, LÜ S, LI Q L, LI Y L. Di-, tri-and tetraphosphine-substituted Fe/Se carbonyls: Synthesis, characterization and electrochemical properties[J]. Dalton Trans., 2022,51(29):11125-11134. doi: 10.1039/D2DT01376B

    33. [33]

      YAN L, YANG J, LÜ S, LIU X F, LI Y L, LIU X H, JIANG Z Q. Phosphine-containing diiron propane-1, 2-dithiolate derivatives: Synthesis, spectroscopy, X-ray crystal structures, and electrochemistry[J]. Catal. Lett., 2021,151(7):1857-1867. doi: 10.1007/s10562-020-03450-2

    34. [34]

      LIU X F, YIN B S. Synthesis and structural characterization of diiron propanedithiolate complex[(μ-PDT) Fe2(CO)5]2[(η5-Ph2PC5H4)2Fe] containing a bidentate phosphine ligand 1, 1'-bis (diphenylphosphino) ferrocene[J]. J. Coord. Chem., 2010,63(23):4061-4067. doi: 10.1080/00958972.2010.531715

    35. [35]

      LIU X F, JIANG Z Q, JIA Z J. Synthesis, characterization and crystal structures of tetrairon ethanedithiolate complexes containing bridging bidentate phosphine ligands[J]. Polyhedron, 2012,33(1):166-170. doi: 10.1016/j.poly.2011.11.032

    36. [36]

      LIU X F. Synthesis and structures of diiron dithiolate complexes with 1, 2-bis (diphenylphosphino) acetylene or tris (2-methoxyphenyl) phosphine[J]. Polyhedron, 2016,117:672-678. doi: 10.1016/j.poly.2016.07.009

    37. [37]

      LI R X, LIU X F, LIU T, YIN Y B, ZOU Y, MEI S K, YAN J. Electrocatalytic properties of[FeFe]-hydrogenases models and visible-light-driven hydrogen evolution efficiency promotion with porphyrin functionalized graphene nanocomposite[J]. Electrochim. Acta, 2017,237:207-216. doi: 10.1016/j.electacta.2017.03.216

    38. [38]

      JIN B, TAN X, ZHANG X X, WANG Z Y, QU Y P, HE Y B, HU T P, ZHAO P H. Substituent effects in carbon-nanotube-supported diiron monophosphine complexes for hydrogen evolution reaction[J]. Electrochim. Acta, 2022,434141325. doi: 10.1016/j.electacta.2022.141325

    39. [39]

      DEY S, RANA A, DEY S G, DEY A. Electrochemical hydrogen production in acidic water by an azadithiolate bridged synthetic hydro-genese mimic: Role of aqueous solvation in lowering overpotential[J]. ACS Catal., 2013,3(3):429-436. doi: 10.1021/cs300835a

    40. [40]

      AHMED M E, DEY S, MONDAL B, DEY A. H2 evolution catalyzed by a FeFe-hydrogenase synthetic model covalently attached to graphite surfaces[J]. Chem. Commun., 2017,53(58):8188-8191. doi: 10.1039/C7CC04281G

    41. [41]

      CHONG D, GEORGAKAKI I P, MEJIA-RODRIGUEZ R, SANABRIA-CHINCHILLA J, SORIAGA M P, DARENSBOURG M Y. Electrocatalysis of hydrogen production by active site analogues of the iron hydrogenase enzyme: Structure/function relationships[J]. Dalton Trans., 2003,4158-4163.

    42. [42]

      DONOVAN E S, NICHOL G S, FELTON G A N. Structural effects upon the durability of hydrogenase-inspired hydrogen-producing electrocatalysts: Variations in the (μ-edt)[Fe2(CO)6] system[J]. J. Organomet. Chem., 2013,726:9-13. doi: 10.1016/j.jorganchem.2012.12.006

    43. [43]

      GLOAGUEN F, LAWRENCE J D, RAUCHFUSS T B. Biomimetic hydrogen evolution catalyzed by an iron carbonyl thiolate[J]. J. Am. Chem. Soc., 2001,123(38):9476-9477. doi: 10.1021/ja016516f

    44. [44]

      LÜ S, BAI S F, GAO X P, WANG Y L, LI Q L. Aminodiphosphine substituted 2Fe2Se complex as new precursor to single and double butterfly Fe/Se models related to FeFe hydrogenase models[J]. J. Mol. Struct., 2023,1290135939. doi: 10.1016/j.molstruc.2023.135939

    45. [45]

      LI Z M, XIAO Z Y, XU F F, ZENG X H, LIU X M. Enhancement in catalytic proton reduction by an internal base in a diiron pentacarbonyl complex: Its synthesis, characterisation, interconversion and electrochemical investigation[J]. Dalton Trans., 2017,46(6):1864-1871. doi: 10.1039/C6DT04409C

    46. [46]

      ZHONG W, WU L, JIANG W D, LI Y L, MOOKAN N, LIU X M. Proton-coupled electron transfer in the reduction of diiron hexacarbonyl complexes and its enhancement on the electrocatalytic reduction of protons by a pendant basic group[J]. Dalton Trans., 2019,48(36):13711-13718. doi: 10.1039/C9DT02058F

    47. [47]

      XIAO Z Y, ZHONG W, LIU X M. Recent developments in electrochemical investigations into iron carbonyl complexes relevant to the iron centres of hydrogenases[J]. Dalton Trans., 2022,51(1):40-47. doi: 10.1039/D1DT02705K

    48. [48]

      LIU X F, LI Y L, LIU X H. Synthesis, characterization, electrocata-lytic properties, and antifungal activity of isoxazole-containing di-iron complexes[J]. Chinese J. Inorg. Chem., 2023,39(12):2367-2376. doi: 10.11862/CJIC.2023.204

    49. [49]

      LIU X F, LI Y L, LIU X H. Heterocyclic pyrazole-containing diiron dithiolato analogues: Synthesis, characterization, electrochemistry, and fungicidal activity[J]. Appl. Organomet. Chem., 2022,36(11)e6884. doi: 10.1002/aoc.6884

  • 加载中
    1. [1]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    2. [2]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    3. [3]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    4. [4]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    5. [5]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    6. [6]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    7. [7]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    8. [8]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    9. [9]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    10. [10]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    11. [11]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    12. [12]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    13. [13]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    14. [14]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    15. [15]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    16. [16]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    17. [17]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    18. [18]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    19. [19]

      Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003

    20. [20]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

Metrics
  • PDF Downloads(0)
  • Abstract views(438)
  • HTML views(72)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return