Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors
- Corresponding author: Fuzhi LI, lifuzhi@hut.edu.cn
Citation:
Min LUO, Xiaonan WANG, Yaqin ZHANG, Tian PANG, Fuzhi LI, Pu SHI. Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(2): 413-424.
doi:
10.11862/CJIC.20240205
LIU R, ZHOU A, ZHANG X R, MU J B, CHE H W, WANG Y M, WANG T T, ZHANG Z X, KOU Z K. Fundamentals, advances and challenges of transition metal compounds-based supercapacitors[J]. Chem. Eng. J., 2021,412128611. doi: 10.1016/j.cej.2021.128611
CAI Y Q, CHEN X G, XU Y, ZHANG Y L, LIU H J, ZHANG H J, TANG J. Ti3C2Tx MXene/carbon composites for advanced supercapacitors: Synthesis, progress, and perspectives[J]. Carbon Energy, 2024,6(2)e501. doi: 10.1002/cey2.501
DU X X, LU J X, LIANG Y, ZHANG Y C, GAO J, ZHU X D. Editable 3D Micro-supercapacitor with high energy density based on mortise-tenon joint structures[J]. ACS Appl. Mater. Interfaces, 2023,15(17):21134-21142. doi: 10.1021/acsami.3c01959
WEI B B, MEI G, LIANG H F, QI Z B, ZHANG D F, SHEN H, WANG Z C. Porous CrN thin films by selectively etching CrCuN for symmetric supercapacitors[J]. J. Power Sources, 2018,385:39-44. doi: 10.1016/j.jpowsour.2018.03.023
GODA E S, LEE S, SOHAIL M, YOON K R. Prussian blue and its analogues as advanced supercapacitor electrodes[J]. J. Energy.‒Chem., 2020,50:206-229. doi: 10.1016/j.jechem.2020.03.031
HU M, JIANG J S, JI R P, ZENG Y. Prussian blue mesocrystals prepared by a facile hydrothermal method[J]. CrystEngComm, 2009,11(11):2257-2259. doi: 10.1039/b911613n
ZHU Y X, QIN J D, SHI G, SUN C, INGRAM M, QIAN S S, LU J, ZHANG S Q, ZHONG Y L. A focus review on 3D printing of wearable energy storage devices[J]. Carbon Energy, 2022,4(6):1242-1261. doi: 10.1002/cey2.199
LIANG X, TANG L J, ZHANG Y C, ZHU X D, GAO J. Robust graphene-based aerogel for integrated 3D asymmetric supercapacitors with high energy density[J]. Chem. Asian J., 2024,19(10)e202400243. doi: 10.1002/asia.202400243
KRISHNAMOORTHY K, PAZHAMALAI P, MANOHARAN S, ALI N U L, KIM S J. Recent trends, challenges, and perspectives in piezoelectric-driven self-chargeable electrochemical supercapacitors[J]. Carbon Energy, 2022,4(5):833-855. doi: 10.1002/cey2.202
WANG Y P, ZHU T, ZHANG Y F, KONG X Z, LIANG S Q, CAO G Z, PAN A Q. Rational design of multi-shelled CoO/Co9S8 hollow microspheres for high-performance hybrid supercapacitors[J]. J. Mater. Chem. A, 2017,5(35):18448-18456. doi: 10.1039/C7TA06036J
XU J, XUE Y, CAO J, WANG G, LI Y, WANG W, CHEN Z. Carbon quantum dots/nickel oxide (CQDs/NiO) nanorods with high capacitance for supercapacitors[J]. RSC Adv., 2016,6(7):5541-5546. doi: 10.1039/C5RA24192H
ZHU Y R, WU Z B, JING M J, HOU H S, YANG Y C, ZHANG Y, YANG X M, SONG W X, JIA X N, JI X B. Porous NiCo2O4 spheres tuned through carbon quantum dots utilised as advanced materials for an asymmetric supercapacitor[J]. J. Mater. Chem. A, 2015,3(2):866-877. doi: 10.1039/C4TA05507A
LI G, CHANG Z Q, LI T Y, MA L L, WANG K Y. Hierarchical Mn-Co sulfide nanosheets on nickel foam by electrochemical co-deposition for high-performance pseudocapacitors[J]. Ionics, 2019,25(8):3885-3895. doi: 10.1007/s11581-019-02946-1
WU W L, ZHAO C H, WANG C W, LIU T T, WANG L, ZHU J F. Hierarchical structure of self-supported NiCo2S4 Nanoflowers@NiCo2S4 nanosheets as high rate-capability and cycling-stability electrodes for advanced supercapacitor[J]. Appl. Surf. Sci., 2021,563150324. doi: 10.1016/j.apsusc.2021.150324
CHENG C, ZHANG X Y, WEI C Z, LIU Y H, CUI C, ZHANG Q, ZHANG D J. Mesoporous hollow ZnCo2S4 core-shell nanospheres for high performance supercapacitors[J]. Ceram. Int., 2018,44(14):17464-17472. doi: 10.1016/j.ceramint.2018.06.215
LIU S D, JUN S C. Hierarchical manganese cobalt sulfide core-shell nanostructures for high-performance asymmetric supercapacitors[J]. J. Power Sources, 2017,342:629-637. doi: 10.1016/j.jpowsour.2016.12.057
QIAN C F, SUN K W, BAO W Z. Recent advance on machine learning of MXenes for energy storage and conversion[J]. Int. J. Energy Res., 2022,46(15):21511-21522. doi: 10.1002/er.7833
YE L, HONG Y, LIAO M, WANG B J, WEI D C, PENG H S, YE L, HONG Y, LIAO M, WANG B, WEI D, PENG H. Recent advances in flexible fiber-shaped metal-air batteries[J]. Energy Storage Mater., 2020,28:364-374. doi: 10.1016/j.ensm.2020.03.015
LI F Z, CHEN Z, ZHANG D, SUN A K, SHI P, LIANG J, HE Q G. Neoteric hollow tubular MnS/Co3S4 hybrids as high-performance electrode materials for supercapacitors[J]. Electrochim. Acta, 2021,390138893. doi: 10.1016/j.electacta.2021.138893
GAO Y, ZHAO L J. Review on recent advances in nanostructured transition-metal-sulfide-based electrode materials for cathode materials of asymmetric supercapacitors[J]. Chem. Eng. J., 2022,430132745. doi: 10.1016/j.cej.2021.132745
ZHU X D, REN C Y, LIANG Y, LIANG X, LU N, ZHANG Y C, ZHAO Y, GAO J. Laser-assisted one-step fabrication of interlayer-spacing-regulated three-dimensional MXene-based micro-supercapacitors[J]. Chem. Eng. J., 2024,483149253. doi: 10.1016/j.cej.2024.149253
WANG X W, SUN Y C, ZHANG W C, WU X. Flexible CuCo2O4@ Ni-Co-S hybrids as electrode materials for high-performance energy storage devices[J]. Chin. Chem. Lett., 2023,34(3)107593. doi: 10.1016/j.cclet.2022.06.016
LIU T, LIU J H, ZHANG L Y, CHENG B, YU J G. Construction of nickel cobalt sulfide nanosheet arrays on carbon cloth for performance-enhanced supercapacitor[J]. J. Mater. Sci. Technol., 2020,47:113-121. doi: 10.1016/j.jmst.2019.12.027
SHEN L F, YU L, WU H B, YU X Y, ZHANG X G, LOU X W. Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties[J]. Nat. Commun., 2015,66694. doi: 10.1038/ncomms7694
WU Z X, FAN L Q, CHEN J J, DENG X G, TANG T, HUANG Y F, WU J H. Amorphous Co-Mo-S nanospheres fabricated via room-temperature vulcanization for asymmetric supercapacitors[J]. J. Colloid Interface Sci., 2023,649:880-889. doi: 10.1016/j.jcis.2023.06.163
XIONG M, IVEY D G. Synthesis of bifunctional catalysts for metal-air batteries through direct deposition methods[J]. Batteries Supercaps, 2018,2(4):326-335.
WANG Y Y, YAN D F, HANKARI E S, ZOU Y Q, WANG S Y. Recent progress on layered double hydroxides and their derivatives for electrocatalytic water splitting[J]. Adv. Sci., 2018,5(8)1800064. doi: 10.1002/advs.201800064
ZHAO Y C, SHI Z, LIN T Q, SUO L M, WANG C, LUO J, RUAN Z S, WANG C A, LI J. Brownian-snowball-mechanism-induced hierarchical cobalt sulfide for supercapacitors[J]. J. Power Sources, 2019,412:321-330. doi: 10.1016/j.jpowsour.2018.11.055
JIA S, LV Y Y, WEI J, GUAN J, ZHAI Y, SHAO Z Q. Amorphous nanosheets constructed nickel cobalt hydroxysulfide hollow spheres as cathode materials for hybrid supercapacitors[J]. Chem. Eng. J., 2023,456141120. doi: 10.1016/j.cej.2022.141120
RAGHAVENDRA K V G, GOPI C V V M, VINODH R, RAO S S, OBAIDAT I M, KIM H J. Facile synthesis of nanoparticles anchored on honeycomb-like MnCo2S4 nanostructures as a binder-free electroactive material for supercapacitors[J]. J. Energy Storage, 2020,27101159. doi: 10.1016/j.est.2019.101159
DAI Z, FENG X T, LI Q, SU P J, SHEN X R, ZHENG Y, JIAO Q Z, ZHAO Y, LI H S, FENG C H. Construction of porous core-shell MnCo2S4 microrugby balls for efficient oxygen evolution reaction[J]. J. Alloy. Compd., 2021,872159652. doi: 10.1016/j.jallcom.2021.159652
ADHIKARI S, NOH G H, SIVAGURUNATHAN A T, KIM D H. Atomic surface regulated nanoarchitectured MnCo2S4@ALD-CoOx positrode with rich redox active sites for high-performance supercapacitors[J]. Chem. Eng. J., 2023,466143177. doi: 10.1016/j.cej.2023.143177
LI C, ZHAO T T, FENG X J, LIU S J, LI L B, ZHA R H, ZHANG Y, ZHANG Z. Construction of hierarchical honeycomb-like MnCo2S4 nanosheets as integrated cathodes for hybrid supercapacitors[J]. J. Alloy. Compd., 2021,859157815. doi: 10.1016/j.jallcom.2020.157815
WU J, SHI X L, SONG W J, REN H, TAN C B, TANG S C, MENG X K. Hierarchically porous hexagonal microsheets constructed by well-interwoven MCo2S4 (M=Ni, Fe, Zn) nanotube networks via two-step anion-exchange for high-performance asymmetric supercapacitors[J]. Nano Energy, 2018,45:439-447. doi: 10.1016/j.nanoen.2018.01.024
ZHENG S S, SUN Y, XUE H G, BRAUNSTEIN P, HUANG W, PANG H. Dual-ligand and hard-soft-acid-base strategies to optimize metal-organic framework nanocrystals for stable electrochemical cycling performance[J]. Natl. Sci. Rev., 2022,9(7)nwab197. doi: 10.1093/nsr/nwab197
ZHANG X, LU W, TIAN Y H, YANG S X, ZHANG Q, LEI D, ZHAO Y Y. Nanosheet-assembled NiCo-LDH hollow spheres as high-performance electrodes for supercapacitors[J]. J. Colloid Interface Sci., 2022,606:1120-1127. doi: 10.1016/j.jcis.2021.08.094
CHANG X Y, ZANG L, LIU S, WANG M Y, GUO H N, WANG C Y, WANG Y J. In situ construction of yolk-shell zinc cobaltite with uniform carbon doping for high performance asymmetric supercapacitors[J]. J. Mater. Chem. A, 2018,6(19):9109-9115. doi: 10.1039/C8TA01759J
ABBASI L, ARVAND M, MOOSAVIFARD S E. Moosavifard Facile template-free synthesis of 3D hierarchical ravine-like interconnected MnCo2S4 nanosheet arrays for hybrid energy storage device[J]. Carbon, 2020,161:299-308. doi: 10.1016/j.carbon.2020.01.094
HAN X K, XUAN H C, GAO J H, LIANG T, YANG J, XU Y K, HAN P D, DU Y W. Construction of manganese-cobalt-sulfide anchored onto rGO/Ni foam with a high capacity for hybrid supercapacitors[J]. Electrochim. Acta, 2018,288:31-41. doi: 10.1016/j.electacta.2018.08.063
ELSHAHAWY A M, LI X, ZHANG H, HU Y T, HO K H, GUAN C, WANG J. Controllable MnCo2S4 nanostructures for high performance hybrid supercapacitors[J]. J. Mater. Chem. A, 2017,5(16):7494-7506. doi: 10.1039/C7TA00943G
LIU X R, ZHU Y R, LU Z H, XIAO J, ZOU G Q, HOU H S, JI X B. Heterostructured flower-like NiO/Co3O4 microspheres modified by bifunctional carbon quantum dots as a battery-type cathode for high energy and power density hybrid supercapacitors[J]. Carbon Neutralization, 2023,2(6):721-737. doi: 10.1002/cnl2.97
ZHU Y R, LU P C, LI F Z, DING Y H, CHEN Y F. Metal-rich porous copper cobalt phosphide nanoplates as a high-rate and stable battery-type cathode material for battery-supercapacitor hybrid devices[J]. ACS Appl. Energy Mater., 2021,4(4):3962-3974. doi: 10.1021/acsaem.1c00335
WANG H F, ZHANG K F, SONG Y Q, QIU J, WU J, YAN L F. MnCo2S4 nanoparticles anchored to N and S codoped 3D graphene as a prominent electrode for asymmetric supercapacitors[J]. Carbon, 2019,146:420-429. doi: 10.1016/j.carbon.2019.02.035
LI L, CHANG Z W, ZHANG X B. Recent progress on the development of metal-air batteries[J]. Adv. Sustain. Syst., 2017,1(10)1700036. doi: 10.1002/adsu.201700036
LI S, HUA M H, YANG Y, HUANG W, LIN X H, CI L J, LOU J, SI P C. Self-supported multidimensional Ni-Fe phosphide networks with holey nanosheets for high-performance all-solid-state supercapacitors[J]. J. Mater. Chem. A, 2019,7(29):17386-17399. doi: 10.1039/C9TA04832D
ZHOU Y, FU Y S, ZHANG T T, HU C Y, QIAO F, WANG J F, NOH H J, BAEK J B. Synthesis of size-controllable, yolk-shell metal sulfide spheres for hybrid supercapacitors[J]. Chem. Eng. J., 2023,476146377. doi: 10.1016/j.cej.2023.146377
RAMACHANDRAN R, HU Q K, RAJAVEL K, ZHU P L, ZHAO C H, WANG F, XU Z X. Non-peripheral octamethyl-substituted copper(Ⅱ) phthalocyanine nanorods with MXene sheets: An excellent electrode material for symmetric supercapacitor with enhanced electrochemical performance[J]. J. Power Sources, 2020,471228472. doi: 10.1016/j.jpowsour.2020.228472
RAMACHANDRAN R, ZHAO C H, RAJKUMAR M, RAJAVEL K, ZHU P L, XUAN W L, XU Z X, WANG F. Porous nickel oxide microsphere and Ti3C2Tx hybrid derived from metal-organic framework for battery-type supercapacitor electrode and non-enzymatic H2O2 sensor[J]. Electrochim. Acta, 2019,322134771. doi: 10.1016/j.electacta.2019.134771
WANG W X, LU Y, ZHAO M L, LUO R J, YANG Y, PENG T, YAN H L, LIU X M, LUO Y S. Controllable tuning of cobalt nickel-layered double hydroxide arrays as multifunctional electrodes for flexible supercapattery device and oxygen evolution reaction[J]. ACS Nano, 2019,13(10):12206-12218. doi: 10.1021/acsnano.9b06910
ZHU Y R, LI J Y, YUN X R, ZHAO G G, GE P, ZOU G Q, LIU Y, HOU H S, JI X B. Graphitic carbon quantum dots modified nickel cobalt sulfide as cathode materials for alkaline aqueous batteries[J]. Nano-Micro Lett., 2020,12(1)16. doi: 10.1007/s40820-019-0355-0
LIU J L, WANG J, XU C H, JIANG H, LI C Z, ZHANG L L, LIN J Y, SHEN Z X. Advanced energy storage devices: Basic principles, analytical methods, and rational materials design[J]. Adv. Sci., 2018,5(1)1700322. doi: 10.1002/advs.201700322
HONG X P, KIM J, SHI S F, ZHANG Y, JIN C H, SUN Y H, TONGAY S, WU J Q, ZHANG Y F, WANG F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures[J]. Nat. Nanotechnol., 2014,9(9):682-686. doi: 10.1038/nnano.2014.167
ZHANG Z G, HUANG X, LI H, WANG H X, ZHAO Y Y, MA T L. All-solid-state flexible asymmetric supercapacitors with high energy and power densities based on NiCo2S4@MnS and active carbon[J]. J. Energy Chem., 2017,26(6):1260-1266. doi: 10.1016/j.jechem.2017.09.025
HAN X K, XUAN H C, GAO J H, LIANG T, YANG J, XU Y K, HAN P D, DU Y W. Construction of manganese-cobalt-sulfide anchored onto rGO/Ni foam with a high capacity for hybrid supercapacitors[J]. Electrochim. Acta, 2018,288:31-41. doi: 10.1016/j.electacta.2018.08.063
PENG H, WEI G G, SUN K J, MA G F, FENG E K, YANG X, LEI Z Q. Integrated and heterostructured cobalt manganese sulfide nanoneedle arrays as advanced electrodes for high-performance supercapacitors[J]. New J. Chem., 2018,42(22):18328-18334. doi: 10.1039/C8NJ04364G
WANG Q H, GAO F, XU B Y, CAI F X, ZHAN F P, GAO F, WANG Q X. ZIF-67 derived amorphous CoNi2S4 nanocages with nanosheet arrays on the shell for a high-performance asymmetric supercapacitor[J]. Chem. Eng. J., 2017,327:387-396. doi: 10.1016/j.cej.2017.06.124
LU W, YANG M, JIANG X, YU Y, LIU X C, XING Y. Template-assisted synthesis of hierarchically hollow C/NiCo2S4 nanospheres electrode for high performance supercapacitors[J]. Chem. Eng. J., 2020,382122943. doi: 10.1016/j.cej.2019.122943
ZHANG J Y, LI C, FAN M Q, MA T L, CHEN H C, WANG H X. Two-dimensional nanosheets constituted trimetal Ni-Co-Mn sulfide nanoflower-like structure for high-performance hybrid supercapacitors[J]. Appl. Surf. Sci., 2021,565150482. doi: 10.1016/j.apsusc.2021.150482
CAO J H, YUAN S Y, YIN H, ZHU Y Y, LI C, FAN M Q, CHEN H C. One-pot synthesis of porous nickel-manganese sulfides with tuneable compositions for high-performance energy storage[J]. J. Sol-Gel Sci. Technol., 2018,85(3):629-637. doi: 10.1007/s10971-018-4580-7
SHEN Y N, ZHANG K, CHEN B H, YANG F, XU K B, LU X H. Enhancing the electrochemical performance of nickel cobalt sulfides hollow nanospheres by structural modulation for asymmetric supercapacitors[J]. J. Colloid Interface Sci., 2019,557:135-143. doi: 10.1016/j.jcis.2019.09.007
Wen LUO , Lin JIN , Palanisamy Kannan , Jinle HOU , Peng HUO , Jinzhong YAO , Peng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418
Yuchen Wang , Yaoyu Liu , Xiongfei Huang , Guanjie He , Kai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
Xinyu Huai , Jingxuan Liu , Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158
Wenhao Feng , Chunli Liu , Zheng Liu , Huan Pang . In-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552
Shudi Yu , Jie Li , Jiongting Yin , Wanyu Liang , Yangping Zhang , Tianpeng Liu , Mengyun Hu , Yong Wang , Zhengying Wu , Yuefan Zhang , Yukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068
Chao Ma , Cong Lin , Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209
Guilong Li , Wenbo Ma , Jialing Zhou , Caiqin Wu , Chenling Yao , Huan Zeng , Jian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449
Ning DING , Siyu WANG , Shihua YU , Pengcheng XU , Dandan HAN , Dexin SHI , Chao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146
Ziyi Zhu , Yang Cao , Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241
Zeyu XU , Tongzhou LU , Haibo SHAO , Jianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164
Run-Han Li , Tian-Yi Dang , Wei Guan , Jiang Liu , Ya-Qian Lan , Zhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
Ziyi Liu , Xunying Liu , Lubing Qin , Haozheng Chen , Ruikai Li , Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405
Changyuan Bao , Yunpeng Jiang , Haoyin Zhong , Huaizheng Ren , Junhui Wang , Binbin Liu , Qi Zhao , Fan Jin , Yan Meng Chong , Jianguo Sun , Fei Wang , Bo Wang , Ximeng Liu , Dianlong Wang , John Wang . Synergizing 3D-printed structure and sodiophilic interface enables highly efficient sodium metal anodes. Chinese Chemical Letters, 2024, 35(11): 109353-. doi: 10.1016/j.cclet.2023.109353
Ya-Nan Yang , Zi-Sheng Li , Sourav Mondal , Lei Qiao , Cui-Cui Wang , Wen-Juan Tian , Zhong-Ming Sun , John E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048