Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties
- Corresponding author: Yu ZHAO, yzhao@lut.edu.cn
Citation:
Yuting ZHANG, Zunyi LIU, Ning LI, Dongqiang ZHANG, Shiling ZHAO, Yu ZHAO. Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties[J]. Chinese Journal of Inorganic Chemistry,
;2024, 40(11): 2163-2174.
doi:
10.11862/CJIC.20240204
Liu Y Y, He G J, Jiang H, Parkin I P, Shearing P R, Brett D J. Cathode design for aqueous rechargeable multivalent ion batteries: Challenges and opportunities[J]. Adv. Funct. Mater., 2021,31(13)2010445. doi: 10.1002/adfm.202010445
Hou H S, Qiu X Q, Wei W F, Zhang Y, Ji X B. Carbon anode materials for advanced sodium-ion batteries[J]. Adv. Energy. Mater., 2017,7(24)1602898. doi: 10.1002/aenm.201602898
Gyanprakash D M, Gupta P K, Sharma G P, Pala R G S. Surface- enhanced OER activity in Co3V2O8 using cyclic charge-discharge to balance electrocatalytic active site generation and degradation[J]. Electrochim. Acta, 2021,367137538. doi: 10.1016/j.electacta.2020.137538
Deng D G, Zhang Y J, Li G, Wang X Y, Gan L H, Jiang L, Wang C R. 2 D manganese vanadate nanoflakes as high-performance anode for lithium-ion batteries[J]. Chem. Asian J., 2014,9(5):1265-1269. doi: 10.1002/asia.201301632
Song H S, Chang J, Wu J M, Wu W, Whitacre J. Microwave synthesis of TiP2O7 assisted by carbon-coating as anode material for aqueous rechargeable lithium ion batteries[J]. ECS Meeting Abstract, 2019,5(3)411.
Shu T, Wang H, Li Q, Feng Z P, Wei F X, Yao K X, Sun Z, Qi J Q, Sui Y W. Highly stable Co3O4 nanoparticles/carbon nanosheets array derived from flake-like ZIF-67 as an advanced electrode for supercapacacitor[J]. Chem. Eng. J., 2021,419129631. doi: 10.1016/j.cej.2021.129631
Jing F Y, Pei J, Zhou Y M, Qin Z Z, Cong B W, Hua K, Chen G. Hierarchical MnV2O4 double-layer hollow sandwich nanosheets confined by N-doped carbon layer as anode for high performance lithium-ion batteries[J]. J. Colloid Interface Sci., 2022,607:538-545. doi: 10.1016/j.jcis.2021.09.017
Manthiram A, Knight J C, Myung S T, Oh S M, Sun Y K. Nickel-rich and lithium-rich layered oxide cathodes: Progress and perspectives[J]. Adv. Energy Mater., 2016,6(1)1501010. doi: 10.1002/aenm.201501010
Bakherad M, Bagherian G, Rezaeifard A, Mosayebi F, Shokoohi B, Keivanloo A. Synthesis of pyrano[2, 3-d]pyrimidines and pyrido[2, 3-d]pyrimidines in the magnetized deionized water based on UV-visible study[J]. J. Iran. Chem. Soc., 2020,18(4):839-852.
Luo B F, Chen M, Zhang Z Y, Hong Y Z, Lv T T, Shi W D. Characterization and photocatalytic activity of Bi3TaO7 prepared by hydrothermal method[J]. J. Solid State Chem., 2017,256:203-212. doi: 10.1016/j.jssc.2017.08.016
Zhao Y, Wang J E, Chen H, Zhang X Y, Fu Y C, Shen J Y. Synthesis of high-surface-area Co-O-Si complex oxide for skeletal isomerization of 1-hexene and hydrodesulfurization of thiophene[J]. Chinese J. Catal., 2014,35(8):1402-1409. doi: 10.1016/S1872-2067(14)60074-7
Xue M W, Hu S H, Chen H, Fu Y C, Shen J Y. Preparation of highly loaded and dispersed Ni/SiO2 catalysts[J]. Catal. Commun., 2011,12(5):332-336. doi: 10.1016/j.catcom.2010.10.002
Cheng K K, Park C. Surface tension of dilute alcohol-aqueous binary fluids: n-butanol/water, n-pentanol/water, and n-hexanol/water solutions[J]. Int. J. Heat Mass Transf., 2017,53(7):2255-2263. doi: 10.1007/s00231-017-1976-9
Asemi M, Suddar A, Ghanaatshoar M. Increasing the specific surface area of Cr-doped TiO2 nanoparticles by controlling the drying time for dssc applications[J]. J. Mater. Sci. Mater. Electron., 2017,28:15233-15238. doi: 10.1007/s10854-017-7401-9
Xu J, Dong Z, Huang K J, Wang T, Qi Y Y, Sun Y X, Wu X. Preparation of large layer spacing bimetallic sulfide hollow nanosphere for high-energy battery system application[J]. Appl. Surf. Sci., 2023,637157959. doi: 10.1016/j.apsusc.2023.157959
Fang G Z, Zhou J, Hu Y, Cao X X, Tang Y, Liang S Q. Facile synthesis of potassium vanadate cathode material with superior cycling stability for lithium ion batteries[J]. J. Power Sources, 2015,275:694-701. doi: 10.1016/j.jpowsour.2014.11.052
Liu J, Yuan H, Liu H, Zhao C Z, Lu Y, Cheng X B, Huang J Q, Zhang Q. Unlocking the failure mechanism of solid state lithium metal batteries[J]. Adv. Energy. Mater., 2022,12(4)2100748. doi: 10.1002/aenm.202100748
Sekhar S C, Nagaraju G, Ramulu B, Narsimulu D, Yu J S. Designing chain-like nickel pyro-vanadate porous spheres as an advanced electrode material for supercapacitors[J]. Inorg. Chem. Front., 2019,6(4):1087-1096. doi: 10.1039/C9QI00137A
Matsushima S, Tanaka Y, Ishii J, Obata K. First-principles energy band calculation of a (Ca2+, V5+)-doped Y2Ti2O7 pigment[J]. J. Ceram. Soc. Jpn., 2019,127(11):793-801. doi: 10.2109/jcersj2.19103
Zhang L, Wang X Y, Zhang Z J, Wang X. Effect of surface chemistry on morphology evolution of LaPO4: Experiment and density functional theory calculations[J]. Comput. Mater. Sci., 2017,127:22-28. doi: 10.1016/j.commatsci.2016.10.024
Zhang S P, Tan H T, Rui X H, Yu Y. Vanadium-based materials: Next generation electrodes powering the battery revolution?[J]. Acc. Chem. Res., 2020,53(8):1660-1671. doi: 10.1021/acs.accounts.0c00362
Liu Y, Zhou X, Chen P, Cao X R, Liu D X, Wang R Q. Properties of hollow yolk-shell NiS2/FeS2@NC@NiFe LDH/FeO(OH) nanoflower microspheres as anode materials for lithium‑ion batteries[J]. J. Electroanal., 2023,943117606. doi: 10.1016/j.jelechem.2023.117606
Ni S B, Lv X H, Ma J J, Yang X L, Zhang L L. A novel electrochemical reconstruction in nickel oxide nanowalls on Ni foam and the fine electrochemical performance as anode for lithium ion batteries[J]. J. Power Sources, 2014,270:564-568. doi: 10.1016/j.jpowsour.2014.07.137
Ni S B, Lv X H, Li T, Yang X L, Zhang L L, Ren Y. A novel electrochemical activation effect induced morphology variation from massif-like CuxO to forest-like Cu2O nanostructure and the excellent electrochemical performance as anode for Li-ion battery[J]. Electrochim. Acta, 2013,96:253-260. doi: 10.1016/j.electacta.2013.02.106
Morishita T, Nomura K, Inamasu T, Inagaki M. Synthesis of anhydrous manganese vanadate powder by coprecipitation and its anodic performance for lithium secondary battery[J]. Solid State Ion, 2005,176(29):2235-2241.
Steinrück H G, Takacs C J, Kim H K, Mackanic D G, Holladay B, Cao C, Narayanan S, Dufresne E M, Chushkin Y, Ruta B, Zontone F. Concentration and velocity profiles in a polymeric lithium-ion battery electrolyte[J]. Energy. Environ., 2020,13(11):4312-4321. doi: 10.1039/D0EE02193H
Xue J X, Liu F Q, Xiang T Q, Jia S X, Zhou J J, Li L. In situ forming gel polymer electrolyte for high energy-density lithium metal batteries[J]. Small, 2024,20(4)2307553. doi: 10.1002/smll.202307553
Mukherjee A, Ardakani H A, Yi T, Cabana J, Shahbazian-Yassar R, Klie R F. Direct characterization of the Li intercalation mechanism into α-V2O5 nanowires using in-situ transmission electron microscopy[J]. Appl. Phys. Lett., 2017,110(21)213903. doi: 10.1063/1.4984111
Evmenenko G, Fister T T, Buchholz D B, Li Q, Chen K S, Wu J, Dravid V P, Hersam M C, Fenter P, Bedzyk M J. Morphological evolution of multilayer Ni/NiO thin film electrodes during lithiation[J]. ACS. Appl. Mater., 2016,8(31):19979-19986. doi: 10.1021/acsami.6b05040
Huang Y, Liang C Y, Cai Y L, Zhou Y, Guo B K, Cheng J P, Liu H G, Wang P, Li Q Q, Nie A, Wang H T, Wu J S, Zhang T Y. Unraveling the reaction reversibility and structure stability of nickel sulfide anodes for lithium ion batteries[J]. J. Energy Chem., 2023,80:392-401. doi: 10.1016/j.jechem.2023.01.010
Cruz-Manzo S, Greenwood P. An impedance model based on a transmission line circuit and a frequency dispersion warburg component for the study of EIS in Li-ion batteries[J]. J. Electroanal., 2020,871114305. doi: 10.1016/j.jelechem.2020.114305
Yang J P, Zhou T F, Zhu R, Chen X Q, Guo Z P, Fan J W, Liu H K, Zhang W X. Highly ordered dual porosity mesoporous cobalt oxide for sodium-ion batteries[J]. Adv. Mater. Interfaces., 2016,3(3)1500464. doi: 10.1002/admi.201500464
Stolz L, Winter M, Kasnatscheew J. Practical relevance of charge transfer resistance at the Li metal electrode|electrolyte interface in batteries?[J]. J. Solid State Electrochem., 2024:1-6.
Ghani F, Nah I W, Kim H S, Lim J, Marium A, Ijaz M F, Rana A U H S. Facile one-step hydrothermal synthesis of the rGO@Ni3V2O8 interconnected hollow microspheres composite for lithium-ion batteries[J]. Nanomaterials, 2020,10(12)2389. doi: 10.3390/nano10122389
Sarkar D, Shukla A, Sarma D D. Substrate integrated nickel-iron ultrabattery with extraordinarily enhanced performances[J]. ACS Energy Lett., 2016,1(1):82-88. doi: 10.1021/acsenergylett.6b00067
Jia S, Wei J, Gong B X, Shao Z Q. Sulfur vacancies enriched nickel-cobalt sulfides hollow spheres with high performance for all-solid-state hybrid supercapacitor[J]. J. Colloid Interface Sci., 2021,601:640-649. doi: 10.1016/j.jcis.2021.05.127
Gu L L, Xie W H, Bai S, Liu B L, Xue S, Li Q, He D Y. Facile fabrication of binder-free NiO electrodes with high rate capacity for lithium-ion batteries[J]. Appl. Surf. Sci., 2016,368:298-302. doi: 10.1016/j.apsusc.2016.01.270
Thieu Q Q V, Kidanu W G, Nguyen H D, Nguyen T L T, Le M L P, Nguyen D Q, Tran N T, Nguyen X V, Kim I T, Nguyen T L. Spinel Ni-ferrite advanced high-capacity anode for Li-ion batteries prepared via coprecipitation route[J]. Ceram. Int., 2022,48(21):31470-31477. doi: 10.1016/j.ceramint.2022.07.066
Yue H W, Chen S J, Tie W W, Wu L J, Xie W H, Li T T, Li W, Li H. Facile synthesis of hierarchical ZnFe2O4 hollow microspheres as high-performance anode for lithium-ion batteries[J]. Ionics, 2021,27(7):2835-2845. doi: 10.1007/s11581-021-04087-w
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
Jiaxuan Zuo , Kun Zhang , Jing Wang , Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
Qianwen Han , Tenglong Zhu , Qiuqiu Lü , Mahong Yu , Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
(a) NVO-8-EtOH, (b) NVO-8-NBA, (c) NVO-8-n-Hexanol, (d) NVO-7-NBA, (e) NVO-9-NBA, and (f) NVO-8.
Inset: corresponding equivalent circuit diagram.