Citation: Yuting ZHANG, Zunyi LIU, Ning LI, Dongqiang ZHANG, Shiling ZHAO, Yu ZHAO. Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204 shu

Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties

  • Corresponding author: Yu ZHAO, yzhao@lut.edu.cn
  • Received Date: 31 May 2024
    Revised Date: 14 September 2024

Figures(9)

  • The relatively cheap nickel vanadate anode material (NVO-NBA) was prepared through an improved co-precipitation method with Ni(NO3)2·6H2O as nickel source, NH4VO3 as vanadium source, and deionized water as a green solvent. The specific surface area and particle dispersion were improved by adjusting the pH value of precipitation with sodium carbonate solution and drying with n-butanol. The effects of the enhanced co-precipitation method on the texture properties of nickel vanadate electrode materials were investigated by testing the microstructure, specific surface area, pore size, and surface element distribution. The results show that the specific surface area, pore size, microstructure, and particle dispersion of the material are significantly affected by the precise adjustment of the pH value of the solution during the precipitation process and the drying method of the subsequent addition of alcohol solvents with smaller surface tension. The typical sample NVO-8-NBA obtained by precipitation at pH=8 and subsequent addition of n-butanol-assisted drying possessed the largest specific surface area (86 m2·g-1), and the material's morphology was spherical nanoparticles with higher dispersion and a smaller diameter. The specific surface area of the vanadate materials obtained by adding alcohol solvents such as ethanol, n-butanol, and n-hexanol for subsequent drying was significantly higher than that of the sample without alcohol treatment, while the samples treated with n-butanol had the best effect, indicating that the alcohol solvent with smaller surface tension can effectively protect the pore system generated by the co-precipitation process and can make the particles disperse more evenly, and the carbon chain length of the alcohol also has a significant effect on its properties. The specific surface area of the sample NVO-8 without alcohol treatment was only 20 m2·g-1, and its morphology was a large block of aggregation. The prepared nickel vanadate material was used as the anode material of the lithium-ion battery. At a current density of 0.3 A·g-1, the first cycle discharge capacity of NVO-8-NBA can reach 1 519 mAh·g-1, while that for NVO-8 was only 536 mAh·g-1. NVO-8-NBA maintained a stable specific capacity of 223 mAh·g-1 after 100 cycles at a current density of 0.3 A·g-1, while that for NVO- 8 was only 45.8 mAh·g-1 and still had a downward trend, indicating the potential advantages of the improved co-precipitation synthesis of vanadate materials in this paper.
  • 加载中
    1. [1]

      Liu Y Y, He G J, Jiang H, Parkin I P, Shearing P R, Brett D J. Cathode design for aqueous rechargeable multivalent ion batteries: Challenges and opportunities[J]. Adv. Funct. Mater., 2021,31(13)2010445. doi: 10.1002/adfm.202010445

    2. [2]

      Hou H S, Qiu X Q, Wei W F, Zhang Y, Ji X B. Carbon anode materials for advanced sodium-ion batteries[J]. Adv. Energy. Mater., 2017,7(24)1602898. doi: 10.1002/aenm.201602898

    3. [3]

      Gyanprakash D M, Gupta P K, Sharma G P, Pala R G S. Surface- enhanced OER activity in Co3V2O8 using cyclic charge-discharge to balance electrocatalytic active site generation and degradation[J]. Electrochim. Acta, 2021,367137538. doi: 10.1016/j.electacta.2020.137538

    4. [4]

      Deng D G, Zhang Y J, Li G, Wang X Y, Gan L H, Jiang L, Wang C R. 2 D manganese vanadate nanoflakes as high-performance anode for lithium-ion batteries[J]. Chem. Asian J., 2014,9(5):1265-1269. doi: 10.1002/asia.201301632

    5. [5]

      Song H S, Chang J, Wu J M, Wu W, Whitacre J. Microwave synthesis of TiP2O7 assisted by carbon-coating as anode material for aqueous rechargeable lithium ion batteries[J]. ECS Meeting Abstract, 2019,5(3)411.

    6. [6]

      Shu T, Wang H, Li Q, Feng Z P, Wei F X, Yao K X, Sun Z, Qi J Q, Sui Y W. Highly stable Co3O4 nanoparticles/carbon nanosheets array derived from flake-like ZIF-67 as an advanced electrode for supercapacacitor[J]. Chem. Eng. J., 2021,419129631. doi: 10.1016/j.cej.2021.129631

    7. [7]

      Jing F Y, Pei J, Zhou Y M, Qin Z Z, Cong B W, Hua K, Chen G. Hierarchical MnV2O4 double-layer hollow sandwich nanosheets confined by N-doped carbon layer as anode for high performance lithium-ion batteries[J]. J. Colloid Interface Sci., 2022,607:538-545. doi: 10.1016/j.jcis.2021.09.017

    8. [8]

      Manthiram A, Knight J C, Myung S T, Oh S M, Sun Y K. Nickel-rich and lithium-rich layered oxide cathodes: Progress and perspectives[J]. Adv. Energy Mater., 2016,6(1)1501010. doi: 10.1002/aenm.201501010

    9. [9]

      Bakherad M, Bagherian G, Rezaeifard A, Mosayebi F, Shokoohi B, Keivanloo A. Synthesis of pyrano[2, 3-d]pyrimidines and pyrido[2, 3-d]pyrimidines in the magnetized deionized water based on UV-visible study[J]. J. Iran. Chem. Soc., 2020,18(4):839-852.

    10. [10]

      Luo B F, Chen M, Zhang Z Y, Hong Y Z, Lv T T, Shi W D. Characterization and photocatalytic activity of Bi3TaO7 prepared by hydrothermal method[J]. J. Solid State Chem., 2017,256:203-212. doi: 10.1016/j.jssc.2017.08.016

    11. [11]

      Zhao Y, Wang J E, Chen H, Zhang X Y, Fu Y C, Shen J Y. Synthesis of high-surface-area Co-O-Si complex oxide for skeletal isomerization of 1-hexene and hydrodesulfurization of thiophene[J]. Chinese J. Catal., 2014,35(8):1402-1409. doi: 10.1016/S1872-2067(14)60074-7

    12. [12]

      Xue M W, Hu S H, Chen H, Fu Y C, Shen J Y. Preparation of highly loaded and dispersed Ni/SiO2 catalysts[J]. Catal. Commun., 2011,12(5):332-336. doi: 10.1016/j.catcom.2010.10.002

    13. [13]

      Cheng K K, Park C. Surface tension of dilute alcohol-aqueous binary fluids: n-butanol/water, n-pentanol/water, and n-hexanol/water solutions[J]. Int. J. Heat Mass Transf., 2017,53(7):2255-2263. doi: 10.1007/s00231-017-1976-9

    14. [14]

      Asemi M, Suddar A, Ghanaatshoar M. Increasing the specific surface area of Cr-doped TiO2 nanoparticles by controlling the drying time for dssc applications[J]. J. Mater. Sci. Mater. Electron., 2017,28:15233-15238. doi: 10.1007/s10854-017-7401-9

    15. [15]

      Xu J, Dong Z, Huang K J, Wang T, Qi Y Y, Sun Y X, Wu X. Preparation of large layer spacing bimetallic sulfide hollow nanosphere for high-energy battery system application[J]. Appl. Surf. Sci., 2023,637157959. doi: 10.1016/j.apsusc.2023.157959

    16. [16]

      Fang G Z, Zhou J, Hu Y, Cao X X, Tang Y, Liang S Q. Facile synthesis of potassium vanadate cathode material with superior cycling stability for lithium ion batteries[J]. J. Power Sources, 2015,275:694-701. doi: 10.1016/j.jpowsour.2014.11.052

    17. [17]

      Liu J, Yuan H, Liu H, Zhao C Z, Lu Y, Cheng X B, Huang J Q, Zhang Q. Unlocking the failure mechanism of solid state lithium metal batteries[J]. Adv. Energy. Mater., 2022,12(4)2100748. doi: 10.1002/aenm.202100748

    18. [18]

      Sekhar S C, Nagaraju G, Ramulu B, Narsimulu D, Yu J S. Designing chain-like nickel pyro-vanadate porous spheres as an advanced electrode material for supercapacitors[J]. Inorg. Chem. Front., 2019,6(4):1087-1096. doi: 10.1039/C9QI00137A

    19. [19]

      Matsushima S, Tanaka Y, Ishii J, Obata K. First-principles energy band calculation of a (Ca2+, V5+)-doped Y2Ti2O7 pigment[J]. J. Ceram. Soc. Jpn., 2019,127(11):793-801. doi: 10.2109/jcersj2.19103

    20. [20]

      Zhang L, Wang X Y, Zhang Z J, Wang X. Effect of surface chemistry on morphology evolution of LaPO4: Experiment and density functional theory calculations[J]. Comput. Mater. Sci., 2017,127:22-28. doi: 10.1016/j.commatsci.2016.10.024

    21. [21]

      Zhang S P, Tan H T, Rui X H, Yu Y. Vanadium-based materials: Next generation electrodes powering the battery revolution?[J]. Acc. Chem. Res., 2020,53(8):1660-1671. doi: 10.1021/acs.accounts.0c00362

    22. [22]

      Liu Y, Zhou X, Chen P, Cao X R, Liu D X, Wang R Q. Properties of hollow yolk-shell NiS2/FeS2@NC@NiFe LDH/FeO(OH) nanoflower microspheres as anode materials for lithium‑ion batteries[J]. J. Electroanal., 2023,943117606. doi: 10.1016/j.jelechem.2023.117606

    23. [23]

      Ni S B, Lv X H, Ma J J, Yang X L, Zhang L L. A novel electrochemical reconstruction in nickel oxide nanowalls on Ni foam and the fine electrochemical performance as anode for lithium ion batteries[J]. J. Power Sources, 2014,270:564-568. doi: 10.1016/j.jpowsour.2014.07.137

    24. [24]

      Ni S B, Lv X H, Li T, Yang X L, Zhang L L, Ren Y. A novel electrochemical activation effect induced morphology variation from massif-like CuxO to forest-like Cu2O nanostructure and the excellent electrochemical performance as anode for Li-ion battery[J]. Electrochim. Acta, 2013,96:253-260. doi: 10.1016/j.electacta.2013.02.106

    25. [25]

      Morishita T, Nomura K, Inamasu T, Inagaki M. Synthesis of anhydrous manganese vanadate powder by coprecipitation and its anodic performance for lithium secondary battery[J]. Solid State Ion, 2005,176(29):2235-2241.

    26. [26]

      Steinrück H G, Takacs C J, Kim H K, Mackanic D G, Holladay B, Cao C, Narayanan S, Dufresne E M, Chushkin Y, Ruta B, Zontone F. Concentration and velocity profiles in a polymeric lithium-ion battery electrolyte[J]. Energy. Environ., 2020,13(11):4312-4321. doi: 10.1039/D0EE02193H

    27. [27]

      Xue J X, Liu F Q, Xiang T Q, Jia S X, Zhou J J, Li L. In situ forming gel polymer electrolyte for high energy-density lithium metal batteries[J]. Small, 2024,20(4)2307553. doi: 10.1002/smll.202307553

    28. [28]

      Mukherjee A, Ardakani H A, Yi T, Cabana J, Shahbazian-Yassar R, Klie R F. Direct characterization of the Li intercalation mechanism into α-V2O5 nanowires using in-situ transmission electron microscopy[J]. Appl. Phys. Lett., 2017,110(21)213903. doi: 10.1063/1.4984111

    29. [29]

      Evmenenko G, Fister T T, Buchholz D B, Li Q, Chen K S, Wu J, Dravid V P, Hersam M C, Fenter P, Bedzyk M J. Morphological evolution of multilayer Ni/NiO thin film electrodes during lithiation[J]. ACS. Appl. Mater., 2016,8(31):19979-19986. doi: 10.1021/acsami.6b05040

    30. [30]

      Huang Y, Liang C Y, Cai Y L, Zhou Y, Guo B K, Cheng J P, Liu H G, Wang P, Li Q Q, Nie A, Wang H T, Wu J S, Zhang T Y. Unraveling the reaction reversibility and structure stability of nickel sulfide anodes for lithium ion batteries[J]. J. Energy Chem., 2023,80:392-401. doi: 10.1016/j.jechem.2023.01.010

    31. [31]

      Cruz-Manzo S, Greenwood P. An impedance model based on a transmission line circuit and a frequency dispersion warburg component for the study of EIS in Li-ion batteries[J]. J. Electroanal., 2020,871114305. doi: 10.1016/j.jelechem.2020.114305

    32. [32]

      Yang J P, Zhou T F, Zhu R, Chen X Q, Guo Z P, Fan J W, Liu H K, Zhang W X. Highly ordered dual porosity mesoporous cobalt oxide for sodium-ion batteries[J]. Adv. Mater. Interfaces., 2016,3(3)1500464. doi: 10.1002/admi.201500464

    33. [33]

      Stolz L, Winter M, Kasnatscheew J. Practical relevance of charge transfer resistance at the Li metal electrode|electrolyte interface in batteries?[J]. J. Solid State Electrochem., 2024:1-6.

    34. [34]

      Ghani F, Nah I W, Kim H S, Lim J, Marium A, Ijaz M F, Rana A U H S. Facile one-step hydrothermal synthesis of the rGO@Ni3V2O8 interconnected hollow microspheres composite for lithium-ion batteries[J]. Nanomaterials, 2020,10(12)2389. doi: 10.3390/nano10122389

    35. [35]

      Sarkar D, Shukla A, Sarma D D. Substrate integrated nickel-iron ultrabattery with extraordinarily enhanced performances[J]. ACS Energy Lett., 2016,1(1):82-88. doi: 10.1021/acsenergylett.6b00067

    36. [36]

      Jia S, Wei J, Gong B X, Shao Z Q. Sulfur vacancies enriched nickel-cobalt sulfides hollow spheres with high performance for all-solid-state hybrid supercapacitor[J]. J. Colloid Interface Sci., 2021,601:640-649. doi: 10.1016/j.jcis.2021.05.127

    37. [37]

      Gu L L, Xie W H, Bai S, Liu B L, Xue S, Li Q, He D Y. Facile fabrication of binder-free NiO electrodes with high rate capacity for lithium-ion batteries[J]. Appl. Surf. Sci., 2016,368:298-302. doi: 10.1016/j.apsusc.2016.01.270

    38. [38]

      Thieu Q Q V, Kidanu W G, Nguyen H D, Nguyen T L T, Le M L P, Nguyen D Q, Tran N T, Nguyen X V, Kim I T, Nguyen T L. Spinel Ni-ferrite advanced high-capacity anode for Li-ion batteries prepared via coprecipitation route[J]. Ceram. Int., 2022,48(21):31470-31477. doi: 10.1016/j.ceramint.2022.07.066

    39. [39]

      Yue H W, Chen S J, Tie W W, Wu L J, Xie W H, Li T T, Li W, Li H. Facile synthesis of hierarchical ZnFe2O4 hollow microspheres as high-performance anode for lithium-ion batteries[J]. Ionics, 2021,27(7):2835-2845. doi: 10.1007/s11581-021-04087-w

  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    3. [3]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    4. [4]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    7. [7]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    8. [8]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    9. [9]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    10. [10]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    11. [11]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    12. [12]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    13. [13]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    14. [14]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    15. [15]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    16. [16]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    17. [17]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    18. [18]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    19. [19]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    20. [20]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

Metrics
  • PDF Downloads(5)
  • Abstract views(321)
  • HTML views(83)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return