Citation: Yanting HUANG, Hua XIANG, Mei PAN. Construction and application of multi-component systems based on luminous copper nanoclusters[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196 shu

Construction and application of multi-component systems based on luminous copper nanoclusters

Figures(14)

  • Copper nanoclusters (Cu NCs) have made remarkable progress in the field of luminescence due to their excellent photophysical properties. However, due to the easy oxidation of copper, it is difficult to obtain Cu NCs with stable structure and high-intensity luminescence. It is one of the most feasible strategies to combine Cu NCs with other components to construct multi-component systems to improve stability and luminescence performance. Such systems can not only effectively make up for the defects of Cu NCs, but also realize the functional diversification of the luminous properties, which is conducive to the practical application of luminous materials. Based on this, this review will give a brief survey of the current study in this field, with first an introduction to the basic structure and effects on the luminescence of Cu NCs, and then a summary of the current strategies and applications of luminous multi-component systems constructed from Cu NCs.
  • 加载中
    1. [1]

      Wang Z G, Chen B K, Rogach A L. Synthesis, optical properties and applications of light-emitting copper nanoclusters[J]. Nanoscale Horiz., 2017,2(3):135-146.

    2. [2]

      Busi K B, Palanivel M, Ghosh K K, Ball W B, Gulyás B, Padmanabhan P, Chakrabortty S. The multifarious applications of copper nanoclusters in biosensing and bioimaging and their translational role in early disease detection[J]. Nanomaterials, 2022,12(3)301.

    3. [3]

      Hu X, Liu T T, Zhuang Y X, Wang W, Li Y Y, Fan W H, Huang Y M. Recent advances in the analytical applications of copper nanoclusters[J]. Trends Anal. Chem., 2016,77:66-75.

    4. [4]

      An Y, Ren Y, Bick M, Dudek A, Waworuntu E H W, Tang J, Chen J, Chang B S. Highly fluorescent copper nanoclusters for sensing and bioimaging[J]. Biosens. Bioelectron., 2020,154112078.

    5. [5]

      Shi Y E, Ma J Z, Feng A R, Wang Z G, Rogach A L. Aggregation-induced emission of copper nanoclusters[J]. Aggregate, 2021,2(6)e112.

    6. [6]

      Shahsavari S, Hadian-Ghazvini S, Saboor F H, Oskouie I M, Hasany M, Simchi A, Rogach A L. Ligand functionalized copper nanoclusters for versatile applications in catalysis, sensing, bioimaging, and optoelectronics[J]. Mat. Chem. Front., 2019,3(11):2326-2356.

    7. [7]

      Vázquez-Vázquez C, Bañobre-López M, Mitra A, López-Quintela M A, Rivas J. Synthesis of small atomic copper clusters in microemulsions[J]. Langmuir, 2009,25(14):8208-8216.

    8. [8]

      LI C H, SUN P P, DING H, LING T, SUN D, XIN X.. Synthesis of metal nanoclusters and regulation of their photoluminescent properties.[J]. Scientia Sinica Chimica, 2021,51(6):688-702.

    9. [9]

      Biswas S, Negishi Y. A comprehensive analysis of luminescent crystallized Cu nanoclusters[J]. J. Phys. Chem. Lett., 2024,15(4):947-958.

    10. [10]

      Qing T P, Zhang K W, Qing Z H, Wang X, Long C C, Zhang P, Hu H Z, Feng B. Recent progress in copper nanocluster-based fluorescent probing: A review[J]. Microchim. Acta, 2019,186670.

    11. [11]

      Lin L Y, Hu Y F, Zhang L L, Huang Y, Zhao S L. Photoluminescence light-up detection of zinc ion and imaging in living cells based on the aggregation induced emission enhancement of glutathionecapped copper nanoclusters[J]. Boisens. Bioelectron., 2017,94:523-529.

    12. [12]

      Huang Y Y, Feng , Liu W D, Zhang S S, Tang C, Chen J R, Qian Z S. Cation-driven luminescent self-assembled dots of copper nanoclusters with aggregation-induced emission for β-galactosidase activity monitoring[J]. J. Mater. Chem. B, 2017,5(26):5120-5127.

    13. [13]

      HAN B Y, HOU X F, XIANG R C, YU M B, LI Y, PENG T T, HE G H.. Detection of lead ion based on aggregation-induced emission of copper nanoclusters.[J]. Chin. J. Anal. Chem., 2017,45(1):23-27.

    14. [14]

      Mei H, Wang Q, Jiang J H, Zhu X L, Wang H L, Qu S G, Wang X D. A novel ratiometric nanoprobe based on copper nanoclusters and graphitic carbon nitride nanosheets using Ce(Ⅲ) as crosslinking agent and aggregation-induced effect initiator for sensitive detection of hydrogen peroxide and glucose[J]. Talanta, 2022,248123604.

    15. [15]

      Qu F, Yang Q Q, Wang B J, You J M. Aggregation-induced emission of copper nanoclusters triggered by synergistic effect of dual metal ions and the application in the detection of H2O2 and related biomolecules[J]. Talanta, 2020,207120289.

    16. [16]

      Ma F H, Deng L, Wang T T, Zhang A M, Yang M H, Li X Q, Chen X. Determination of 2, 6-dipicolinic acid as an anthrax biomarker based on the enhancement of copper nanocluster fluorescence by reversible aggregation-induced emission[J]. Microchim. Acta, 2023,190291.

    17. [17]

      Mei H, Wang J P, Zhu X L, Sun J, Shi W, Wang H L, Qu S G, Wang X D. Ce3+ and Fe2+ co-enhanced ratiometric fluorescence probe utilizing copper nanoclusters and coumarin for sensitive assay of hydrogen peroxide and glucose[J]. Ecotox. Environ. Safe., 2022,245114117.

    18. [18]

      Yuan J, Wu W N, Guo L X, Hao J C, Dong S L. Multistimuli-responsive and antifreeze aggregation-induced emission-active gels based on Cu NCs[J]. Langmuir, 2022,38(1):343-351.

    19. [19]

      Chen X Q, Liu Y H, Liu X T, Lu C. Nanoparticle-based single molecule fluorescent probes[J]. Luminescence, 2022,37(11):1808-1821.

    20. [20]

      Lin S M, Dong J X, Zhang B W, Yuan Z M, Lu C X, Han P, Xu J, Jia L N, Wang L. Synthesis of bifunctional fluorescent nanohybrids of carbon dots-copper nanoclusters via a facile method for Fe3+ and Tb3+ ratiometric detection[J]. Anal. Methods, 2021,13:3577-3584.

    21. [21]

      Song S L, Zhao Y, Li Y, Yang X D, Wang D, Wen Z Q, Yang M H, Lin Q. pH-responsive copper-cluster-based dual-emission ratiometric fluorescent probe for imaging of bacterial metabolism[J]. Talanta, 2021,221121621.

    22. [22]

      Li Y Y, He Y, Ge Y L, Song G W, Zhou J G. Different fluorescence emitting copper nanoclusters protected by egg white and double-emission fluorescent probe for fast detection of ethanol[J]. Microchim.Acta, 2021,188101.

    23. [23]

      Chen L Y, Luque R, Li Y W. Controllable design of tunable nanostructures inside metal-organic frameworks[J]. Chem. Soc. Rev., 2017,46(15):4614-4630.

    24. [24]

      Wang Z G, Chen R, Xiong Y, Cepe K, Schneider J, Zboril R, Lee C S, Rogach A L. Incorporating copper nanoclusters into metal-organic frameworks: confinement-assisted emission enhancement and application for trinitrotoluene detection[J]. Part. Part. Syst. Charact, 2017,34(6)1700029.

    25. [25]

      Lu J Y, Yuan Y R, Zhang Q, Wang Y L, Liu S Y, Wu J Z. A novel ratiometric fluorescent probe for the detection of bilirubin based on the copper nanoclusters-metal organic frameworks hybrids[J]. Fuller.Nanotub. Carbon Nanostruct., 2023,31(8):724-730.

    26. [26]

      Han B Y, Hu X X, Yu M B, Peng T T, Li Y, He G H. One-pot synthesis of enhanced fluorescent copper nanoclusters encapsulated in metal-organic frameworks[J]. RSC Adv., 2018,8:22748-22754.

    27. [27]

      Wang Z G, Xiong Y, Kershaw S V, Chen B K, Yang X M, Goswami N, Lai M F, Xie J P, Rogach A L. In situ fabrication of flexible, thermally stable, large-area, strongly luminescent copper nanocluster/polymer composite films[J]. Chem. Mater., 2017,29(23):10206-10211.

    28. [28]

      Wang Z G, Shi Y E, Yang X M, Xiong Y, Li Y X, Chen B K, Lai W F, Rogach A L. Water-soluble biocompatible copolymer hypromellose grafted chitosan able to load exogenous agents and copper nanoclusters with aggregation-induced emission[J]. Adv. Funct. Mater., 2018,28(34)1802848.

    29. [29]

      Talite M J, Chou W C, Yuan C T. Efficient synthesis and optical properties of highly luminescent copper nanoclusters[J]. J. Fluoresc., 2018,10672106723H.

    30. [30]

      Li L, Huang M, Liu X H, Sun D M, Shao C Y. In situ generation of fluorescent copper nanoclusters embedded in monolithic eggshell membrane: Properties and applications[J]. Materials, 2018,11(10)1913.

    31. [31]

      Lettieri M, Palladino P, Scarano S, Minunni M. Copper nanoclusters and their application for innovative fluorescent detection strategies: An overview[J]. Sens. Actuator Rep., 2022,4100108.

    32. [32]

      Ma J Z, Lu Z D, Li C M, Luo Y J, Shi Y E, Alam P, Lam J W Y, Wang Z G, Tang B Z. Fluorescence ratiometric assay for discriminating GSH and Cys based on the composites of UiO-66-NH2 and Cu nanoclusters[J]. Biosens. Bioelectron., 2022,215114582.

    33. [33]

      Shi Y E, Han F, Xie L Y, Zhang C C, Li T Z, Wang H G, Lai W F, Luo S J, Wei W, Wang Z G, Huang Y. A MXene of type Ti3C2Tx functionalized with copper nanoclusters[J]. Microchim. Acta, 2020,18738.

    34. [34]

      Huang X M, Lan M J, Wang J, Guo L H, Lin Z Y, Sun N, Wu C M, Qiu B. A fluorescence signal amplification and specific energy transfer strategy for sensitive detection of β-galactosidase based on the effects of AIE and host-guest recognition[J]. Biosens. Bioelectron., 2020,169112655.

    35. [35]

      Geng F H, Zou C P, Liu J H, Zhang Q C, Guo X Y, Fan Y C, Yu H D, Yang S, Liu Z P, Li L. Development of luminescent nanoswitch for sensing of alkaline phosphatase in human serum based on Al3+-PPi interaction and Cu NCs with AIE properties[J]. Anal. Chim. Acta, 2019,1076:131-137.

    36. [36]

      Song S L, Zhang Y P, Yang Y Z, Wang C X, Zhou Y, Zhang C, Zhao Y Q, Yang M H, Lin Q. Ratiometric fluorescence detection of trace water in organic solvents based on aggregation-induced emission enhanced Cu nanoclusters[J]. Analyst, 2018,143(13):3068-3074.

    37. [37]

      Mei H, Wang Q, Jiang J H, Zhu X L, Wang H L, Qu S G, Wang X D. A novel ratiometric nanoprobe based on copper nanoclusters and graphitic carbon nitride nanosheets using Ce(Ⅲ) as crosslinking agent and aggregation-induced effect initiator for sensitive detection of hydrogen peroxide and glucose[J]. Talanta, 2022,248123604.

    38. [38]

      Zhang L B, Wang E K. Metal nanoclusters: New fluorescent probes for sensors and bioimaging[J]. Nano Today, 2014,9(1):132-157.

    39. [39]

      Xin Y, Zhang D, Zeng Y, Wang Y W, Qi P. A dual-emission ratiometric fluorescent sensor based on copper nanoclusters encapsulated in zeolitic imidazolate framework-90 for rapid detection and imaging of adenosine triphosphate[J]. Anal. Methods, 2023,15:788-796.

    40. [40]

      Luo X Y, Pan M. Metal-organic materials with circularly polarized luminescence[J]. Coord. Chem. Rev., 2022,468214640.

    41. [41]

      Liu M Y, Kuang K X, Li G H, Yang S Q, Yuan Z W. Photoluminescence-enhanced cholesteric films: Coassembling copper nanoclusters with cellulose nanocrystals[J]. Carbohydr. Polym., 2021,257117641.

    42. [42]

      Wang Y J, Jin Y, Shi X Y, Dong X Y, Zang S Q. Achiral copper clusters helically confined in self-assembled chiral nanotubes emitting circularly polarized phosphorescence[J]. Inorg. Chem. Front., 2022,9(13):3330-3334.

    43. [43]

      Li S L, Zhang S S, Feng N, Zhang N, Zhu Y, Liu Y H, Wang W J, Xin X. Chiral inversion and recovery of supramolecular luminescent copper nanocluster hydrogels triggered by polyethyleneimine and polyoxometalates[J]. ACS Appl. Mater. Interfaces, 2022,14(46):52324-52333.

  • 加载中
    1. [1]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    2. [2]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    3. [3]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    4. [4]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    5. [5]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    6. [6]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    7. [7]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    8. [8]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    9. [9]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    10. [10]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    11. [11]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    12. [12]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    13. [13]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    14. [14]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    15. [15]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    16. [16]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    17. [17]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    18. [18]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    19. [19]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    20. [20]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

Metrics
  • PDF Downloads(3)
  • Abstract views(380)
  • HTML views(79)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return