Citation:
Ran HUO, Zhaohui ZHANG, Xi SU, Long CHEN. Research progress on multivariate two dimensional conjugated metal organic frameworks[J]. Chinese Journal of Inorganic Chemistry,
;2024, 40(11): 2063-2074.
doi:
10.11862/CJIC.20240195
-
Multivariate two-dimensional conjugated metal-organic frameworks (MTV 2D c-MOFs) represent a novel class of porous crystalline materials constructed by coordinating multiple organic ligands and metal nodes. These advantages include predictable topology, tunable porosity, high conductivity, and high electrocatalytic activity, making them widely applicable in electrocatalysis, energy storage, and gas sensing. By leveraging the synergistic effects of multiple metal ions or organic ligands, the electrochemical activity and selectivity of MTV 2D c-MOFs can be efficiently optimized, resulting in superior conductivity and catalytic performance compared to traditional two-component 2D c-MOFs. In this mini-review, we first outline several common construction strategies for MTV 2D c-MOFs and provide a detailed comparison with two-component 2D c-MOFs. In addition, we discuss the promising application prospects of MTV 2D c-MOFs across various fields. Finally, we address the current challenges hindering the development of MTV 2D c-MOFs, highlighting directions for future research and improvement.
-
-
-
[1]
Qi M L, Zhou Y, Lv Y K, Chen W B, Su X, Zhang T, Xing G L, Xu G, Terasaki O, Chen L. Direct construction of 2D conductive metal-organic frameworks from a nonplanar ligand: In situ Scholl reaction and topological modulation[J]. J. Am. Chem. Soc., 2023,145:2739-2744.
-
[2]
Qiu S L, Zhu G S. Molecular engineering for synthesizing novel structures of metal-organic frameworks with multifunctional properties[J]. Coord. Chem. Rev., 2009,253:2891-2911.
-
[3]
Zhang X, Chen Z J, Liu X Y, Hanna S L, Wang X J, Taheri-Ledari R, Maleki A, Li P, Farha O K. A historical overview of the activation and porosity of metal-organic frameworks[J]. Chem. Soc. Rev., 2020,49:7406-7427.
-
[4]
Ghasempour H, Wang K Y, Powell J A, ZareKarizi F, Lv X L, Morsali A, Zhou H C. Metal-organic frameworks based on multicarboxylate linkers[J]. Coord. Chem. Rev., 2021,426213542.
-
[5]
Deng H X, Doonan C J, Furukawa H, Ferreira R B, Towne J, Knobler C B, Wang B, Yaghi O M. Multiple functional groups of varying ratios in metal-organic frameworks[J]. Science, 2010,327:846-850.
-
[6]
Trickett C A, Helal A, Bassem A, Maythalony A, Yamani Z H, Cordova K E, Yaghi O M. The chemistry of metal-organic frameworks for CO2 capture, regeneration and conversion[J]. Nat. Rev. Mater., 2017,4:296-312.
-
[7]
Gao J K, Qian X F, Lin R B, Krishna R, Wu H, Zhou W, Chen B L. Mixed metal-organic framework with multiple binding sites for efficient C2H2/CO2 separation[J]. Angew. Chem. Int. Ed., 2020,59:4396-4400.
-
[8]
Liu L Z, Yao Z Z, Ye Y X, Yang Y K, Lin Q J, Zhang Z J, O'Keeffe M, Xiang S C. Integrating the pillared-layer strategy and pore-space partition method to construct multicomponent MOFs for C2H2/CO2 separation[J]. J. Am. Chem. Soc., 2020,42:9258-9266.
-
[9]
Chumillas M V, Liu X Y, Leyva-Pérez A, Armentano D, Ferrando-Soria J, Pardo D. Mixed component metal-organic frameworks: Hetero-geneity and complexity at the service of application performances[J]. Coord. Chem. Rev., 2022,451214273.
-
[10]
McDaniel J G, Yu K, Schmidt J R. Microscopic origins of enhanced gas adsorption and selectivity in mixed-linker metal-organic frame-works[J]. J. Phys. Chem. C, 2013,117:17131-17142.
-
[11]
Jiang H L, Feng D W, Liu T F, Li J R, Zhou H C. Pore surface engineering with controlled loadings of functional groups via click chemistry in highly stable metal-organic frameworks[J]. J. Am. Chem. Soc., 2012,134:14690-14693.
-
[12]
Yang J, Yan X, Xue T, Liu Y. Enhanced CO2 adsorption on Al-MIL-53 by introducing hydroxyl groups into the framework[J]. RSC Adv., 2016,6:55266-55271.
-
[13]
Liu J J, Song X Y, Zhang T, Liu S Y, Wen H R, Chen L. 2D conductive metal-organic frameworks: an emerging platform for electrochemical energy storage[J]. Angew. Chem. Int. Ed., 2021,60:5612-5624.
-
[14]
Xing G L, Liu J J, Zhou Y, Fu S, Zheng J J, Su X, Gao X F, Terasaki O, Bonn M, Wang H I, Chen L. Conjugated nonplanar copper-catecholate conductive metal-organic frameworks via contorted hexabenzocoronene ligands for electrical conduction[J]. J. Am. Chem. Soc., 2023,145(16):8979-8987.
-
[15]
Wang M C, Dong R H, Feng X L. Two-dimensional conjugated metal-organic frameworks (2D c-MOFs): Chemistry and function for MOFtronics[J]. Chem. Soc. Rev., 2021,50:2764-2793.
-
[16]
Sun L, Hendon C H, Park S S, Tulchinsky Y, Wan R, Wang F, Walsh A, Dinca M. Is iron unique in promoting electrical conductivity in MOFs?[J]. Chem Sci., 2017,8:4450-4457.
-
[17]
Park J G, Aubrey M L, Oktawiec J, Chakarawet K, Darago L E, Grandjean F, Long G J, Long J R. Charge delocalization and bulk electronic conductivity in the mixed-valence metal-organic frame-work Fe(1, 2, 3-triazolate)2(BF4)x[J]. J. Am. Chem. Soc., 2018,140:8526-8534.
-
[18]
Yang C Q, Dong R H, Wang M, Petkov P S, Zhang Z T, Wang M C, Han P, Ballabio M, Bräuninger S A, Liao Z Q, Zhang J C, Schwotzer F, Zschech E, Klauss H, Cánovas E, Kaskel S, Bonn M, Zhou S Q, Heine T, Feng X L. A semiconducting layered metal-organic frame-work magnet[J]. Nat. Commun., 2019,10:3260-3269.
-
[19]
Park J, Hinckley A C, Huang Z H, Feng D W, Yakovenko A A, Lee M, Chen S C, Zou X D, Bao Z N. Synthetic routes for a 2D semiconductive copper hexahydroxybenzene metal-organic framework[J]. J.Am. Chem. Soc., 2018,140:14533-14537.
-
[20]
Liu J J, Zhou Y, Xie Z, Li Y, Liu Y P, Sun J, Ma Y H, Terasaki O, Chen L. Conjugated copper-catecholate framework electrodes for efficient energy storage[J]. Angew. Chem. Int. Ed., 2020,59:1081-1086.
-
[21]
Clough A J, Orchanian N M, Skelton S K, Neer A J, Howard A S, Downes A C, Piper L F G, Walsh A, Melot B C, Marinescu S C. Room temperature metallic conductivity in a metal-organic frame-work induced by oxidation[J]. J. Am. Chem. Soc., 2019,141:16323-16330.
-
[22]
Clough A J, Yoo J W, Mecklenburg M H, Marinescu S C. Two-dimensional metal-organic surfaces for efficient hydrogen evolution from water[J]. J. Am. Chem. Soc., 2015,137:118-121.
-
[23]
Liu J J, Yang D, Zhou Y, Zhang G, Xing G L, Liu Y P, Ma Y H, Terasaki O, Yang S B, Chen L. Tricycloquinazoline-based 2D conductive metal-organic frameworks promising electrocatalysts for CO2 reduction[J]. Angew. Chem. Int. Ed., 2021,60:14473-14479.
-
[24]
Feng D W, Lei T, Lukatskaya M R, Park J, Huang Z H, Lee M, Shaw L, Chen S C, Yakovenko A, Kulkarni A, Xiao J P, Fredrickson K, Tok J B, Zou X D, Cui Y, Bao Z N. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance[J]. Nat. Energy, 2018,3:30-36.
-
[25]
Yao M S, Zheng J J, Wu A Q, Xu G, Nagarkar S, Zhang G, Tsujimoto M, Sakaki S, Horike S, Otake S, Kitagawa S. A dual-ligand porous coordination polymer chemiresistor with modulated conductivity and porosity[J]. Angew. Chem. Int. Ed., 2020,59:172-176.
-
[26]
Yao M S, Lv X J, Fu Z H, Li W H, Deng W H, Wu G D, Xu G. Layer-by-layer assembled conductive metal-organic framework nanofilms for room-temperature chemiresistive sensing[J]. Angew. Chem. Int. Ed., 2017,56:16510-16514.
-
[27]
Campbell M G, Sheberla D, Liu S F, Swager T M, Dincǎ M. Cu3 (hexaiminotriphenylene)2: An electrically conductive 2D metal-organic framework for chemiresistive sensing[J]. Angew. Chem. Int.Ed., 2015,54:4349-4352.
-
[28]
Campbell M G, Liu S F, Swager T M, Dincǎ M. Chemiresistive sensor arrays from conductive 2D metal-organic frameworks[J]. J. Am.Chem. Soc., 2015,137:13780-13783.
-
[29]
Choi Y, Wang M Y, Check B, Stodolka M, Tayman K, Sharma S, Park J. Linker-based bandgap tuning in conductive MOF solid solutions[J]. Small, 2023,192206988.
-
[30]
Dong R H, Zheng Z K, Tranca D C, Zhang J, Chandrasekhar N, Liu S H, Zhuang X D, Seifert G, Feng X L. Immobilizing molecular metal dithiolene-diamine complexes on 2D metal-organic frame-works for electrocatalytic H2 production[J]. Chem.-Eur. J., 2017,23(2):255-2260.
-
[31]
Lee S J, Telfer S G. Multicomponent metal-organic frameworks[J]. Angew. Chem. Int. Ed., 2023,62e202306341.
-
[32]
Wang Y M, Ning G H, Li D. Multifunctional metal-organic frameworks as catalysts for tandem reactions[J]. Chem.-Eur. J., 2024e202400360.
-
[33]
Chen L Y, Wang H F, Li C X, Xu Q. Bimetallic metal-organic frame-works and their derivatives[J]. Chem. Sci., 2020,11:5369-5403.
-
[34]
Chen T Y, Dou J H, Yang L M, Sun C Y, Libretto N J, Skorupskii G, Miller J T, Dinca M. Continuous electrical conductivity variation in M3(hexaiminotriphenylene)2 (M=Co, Ni, Cu) MOF alloys[J]. J. Am.Chem. Soc., 2020,142:12367-12373.
-
[35]
Lian Y B, Yang W J, Zhang C F, Sun H, Deng Z, Xu W J, Song L, Ouyang Z W, Wang Z X, Guo J, Peng Y. Unpaired 3d electrons on atomically dispersed cobalt centres in coordination polymers regulate both oxygen reduction reaction (ORR) activity and selectivity for use in zinc-air batteries[J]. Angew. Chem. Int. Ed., 2020,59:286-294.
-
[36]
Yoon H J, Lee S, Oh S J, Park H J, Choi S, Oh M Y. Synthesis of bimetallic conductive 2D metal-organic framework (CoxNiy-CAT) and its mass production: Enhanced electrochemical oxygen reduction activity[J]. Small, 2019,151805232.
-
[37]
Zhao Z H, Huang J R, Liao P Q, Chen X M. Highly efficient electroreduction of CO2 to ethanol via asymmetric C—C coupling by a metal-organic framework with heterodimetal dual sites[J]. J. Am. Chem. Soc., 2023,145:26783-26790.
-
[38]
Zhong H X, Ghorbani-Asl M, Ly K H, Zhang J C, Ge J, Wang M C, Liao Z Q, Makarov D, Zschech E, Brunner E, Weidinger I M, Zhang J, Krasheninnikov A V, Kaskel S, Dong R H, Feng X L. Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks[J]. Nat. Commun., 2020,11:1409-1419.
-
[39]
Pang L Y, Jia X, Wang P, Wang Y L, Yang Y H, Liu H. Bimetallic synergy boost TCPP(Ni)-Co MOF as the high-performance electrochemical sensor for enhanced detection of trace theophylline[J]. Microchem. J., 2022,183107981.
-
[1]
-
-
-
[1]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[2]
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
-
[3]
Xueting Cao , Shuangshuang Cha , Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041
-
[4]
Jianchun Wang , Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082
-
[5]
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
-
[6]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[7]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[8]
Jiayu Tang , Jichuan Pang , Shaohua Xiao , Xinhua Xu , Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021
-
[9]
Ru SONG , Biao WANG , Chunling LU , Bingbing NIU , Dongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397
-
[10]
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
-
[11]
Bin HE , Hao ZHANG , Lin XU , Yanghe LIU , Feifan LANG , Jiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161
-
[12]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[13]
.
CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级
. CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -. -
[14]
Zhifang SU , Zongjie GUAN , Yu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290
-
[15]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[16]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[17]
Hao WANG , Kun TANG , Jiangyang SHAO , Kezhi WANG , Yuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176
-
[18]
Aiai WANG , Lu ZHAO , Yunfeng BAI , Feng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225
-
[19]
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
-
[20]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
-
[1]
Metrics
- PDF Downloads(28)
- Abstract views(927)
- HTML views(227)