Citation: Yanhui XUE, Shaofei CHAO, Man XU, Qiong WU, Fufa WU, Sufyan Javed Muhammad. Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183 shu

Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy

Figures(7)

  • The multi-layer hexagonal hole MXene electrode material was constructed by using the carbon vacancy defect ordering strategy, and the energy density of 235.8 Wh·kg-1 in the soft-pack supercapacitor was realized at the power density of 6 480 W·kg-1. The electrode material has a structure of three-dimensional hexagonal holes, which increases the contact area with the electrolyte and provides more active sites for potassium ion storage. Combined with the pseudo-capacitance effect caused by the change of valency of newly exposed titanium atoms in the inner wall of the hexagonal hole, the internal reason for the increase of specific capacity of multi-layer hexagonal hole MXene water system potassium ion supercapacitor is explained. The adsorption energy of multilayer hexagonal porous MXene for potassium ion was calculated by density functional theory, and the optimal position of potassium ion adsorption was determined by electrochemical potassium storage experiment and kinetic analysis, and the adsorption law of potassium ion was obtained. By a quantitative analysis of the band structure and differential charge density of electrons in multi-layer hexagonal hole MXene, the internal mechanism of high conductivity and good magnification performance of the water system potassium ion supercapacitor is revealed.
  • 加载中
    1. [1]

      Jia T Q, Zhong G, Lv Y, Li N R, Liu Y R, Yu X L, Zou J S, Chen Z, Peng L L, Kang F Y. Prelithiation strategies for silicon-based anode in high energy density lithium-ion battery[J]. Green Energy Environ., 2023,8(5):1325-1340. doi: 10.1016/j.gee.2022.08.005

    2. [2]

      Nwachukwu I M, Nwanya A C, Alshoaibi A, Awada C, Ekwealor A, Ezema F I. Recent progress in green synthesized transition metal-based oxides in lithium-ion batteries as energy storage devices[J]. Curr. Opin. Electrochem., 2023,39101250. doi: 10.1016/j.coelec.2023.101250

    3. [3]

      Chang H, Liu X Y, Zhao S, Liu Z L, Lv R T, Zhang Q Y, Yi T F. Self-assembled 3D N/P/S-tridoped carbon nanoflower with highly branched carbon nanotubes as efficient bifunctional oxygen electrocatalyst toward high-performance rechargeable zn-air batteries[J]. Adv. Funct. Mater., 2024,34(16)2313491. doi: 10.1002/adfm.202313491

    4. [4]

      Yi T F, Qiu L Y, Qu J P, Liu H Y, Zhang J H, Zhu Y R. Towards high-performance cathodes: Design and energy storage mechanism of vanadium oxides-based materials for aqueous Zn-ion batteries[J]. Coordin. Chem. Rev., 2021,446214124. doi: 10.1016/j.ccr.2021.214124

    5. [5]

      Chang H, Zhao L L, Zhao S, Liu Z L, Wang P F, Xie Y, Yi T F. Tuning interface mechanism of Fe Co alloy embedded N, S-codoped carbon substrate for rechargeable Zn-air battery[J]. J. Energy Chem., 2024,93:400-410. doi: 10.1016/j.jechem.2024.02.044

    6. [6]

      Chang H, Guo Y F, Liu X, Wang P F, Xie Y, Yi T F. Dual MOF-derived Fe/N/P-tridoped carbon nanotube as high-performance oxygen reduction catalysts for zinc-air batteries[J]. Appl. Catal. B-Environ., 2023,327122469. doi: 10.1016/j.apcatb.2023.122469

    7. [7]

      Yao Q Q, Tang P, Xie S Y, Chen Y C, Dou Q Y, Zhu J, Yan X B. Tailoring carbon cathode microstructure for synergistic integration of hybrid ion capacitor and dual-ion Battery[J]. Adv. Funct. Mater., 20242314962.

    8. [8]

      Wang K F, Sun F, Zhang B R, Wu D Y, Wang H, Gao J H, Zhao G B. Nitrogen-doped hollow carbon nanoparticles with optimized multiscale nanostructures via dolomite-assisted chemical vapor deposition for high-performance potassium-ion capacitor[J]. Carbon, 2023,214118318. doi: 10.1016/j.carbon.2023.118318

    9. [9]

      Jiang L W, Lu Y X, Zhao C L, Liu L L, Zhang J N, Zhang Q Q, Shen X, Zhao J M, Yu X Q, Li H, Huang X J, Chen L Q, Hu Y S. Building aqueous K-ion batteries for energy storage[J]. Nat. Energy, 2019,4(6):495-503. doi: 10.1038/s41560-019-0388-0

    10. [10]

      Huang P F, Han W Q. Recent advances and perspectives of Lewis acidic etching route: An emerging preparation strategy for MXenes[J]. Nano-Micro Lett., 2023,15(1)68. doi: 10.1007/s40820-023-01039-z

    11. [11]

      Xue Y H, Chao S F, Xu M, Wu Q, Zhang Q J, Liu Y J, Wu F F, Liu L, Javed M S, Zhang W. Multi-layers hexagonal hole MXene trap constructed by carbon vacancy defect regulation strategy enables high energy density potassium-ions storage[J]. Energy Storage Mater., 2024,71103558. doi: 10.1016/j.ensm.2024.103558

    12. [12]

      SHI D, HUANG Z L, YAN S D, WANG J, WANG G H. Preparation of Bi3TaO7 /MXene nanosheets heterojunction for photocatalytic degradation of sodium sulfadiazine[J]. Chinese J. Inorg. Chem., 2022,38(8):1487-1498.

    13. [13]

      WANG C, LIU Q H, QI C Y, WANG C Y, ZHAO X L, YANG X W. Synthesis and supercapacitor performances of 0D/2D Mxene composite membrane[J]. Chinese J. Inorg. Chem., 2022,38(9):1707-1715.

    14. [14]

      Liu L Y, Zschiesche H, Antonietti M, Gibilaro M, Chamelot P, Massot L, Rozier P, Taberna P L, Simon P. In situ synthesis of MXene with tunable morphology by electrochemical etching of MAX phase prepared in molten salt[J]. Adv. Energy Mater., 2023,13(7)2203805. doi: 10.1002/aenm.202203805

    15. [15]

      Chao S F, Xue Y H, Yu J Y, Liu J Y, Wu Q, Wu F F, Yu C W, Javed M S, Zhang W. Hexagon MXene based heterojunction interface with high ion adsorption and electron transfer efficiency for soft-package potassium-ions aqueous supercapacitors[J]. J. Collid Interface Sci., 2024,673922. doi: 10.1016/j.jcis.2024.06.115

    16. [16]

      Lamiel C, Hussain I, Warner J H, Zhang K L. Beyond Ti-based MXenes: A review of emerging non-Ti based metal-MXene structure, properties, and applications[J]. Mater. Today, 2023,63:313-338. doi: 10.1016/j.mattod.2023.01.020

    17. [17]

      Bashir T, Zhou S W, Yang S Q, Ismail S A, Ali T, Wang H, Zhao J Q, Gao L J. Progress in 3D-MXene electrodes for lithium/sodium/potassium/magnesium/zinc/aluminum-ion batteries[J]. Electrochem. Energy R, 2023,6(1)5. doi: 10.1007/s41918-022-00174-2

    18. [18]

      Wu Q, Xue Y H, Chao S F, Wu F F, Javaed M S, Li L, Zhang W. Moiré-superlattice MXenes enabled ultra-stable K-ion storage in neutral electrolyte[J]. Nano Res., 2023,4:5006-5017.

    19. [19]

      Bao W Z, Tang X, Guo X, Choi S H, Wang C Y, Gogotsi Y, Wang G X. Porous cryo-dried MXene for efficient capacitive deionization[J]. Joule, 2018,2(4):778-787. doi: 10.1016/j.joule.2018.02.018

    20. [20]

      Hussain I, Lamiel C, Javed M S, Ahmad M, Sahoo S, Chen X, Qin N, Iqbal S, Gu S, Li Y X. MXene-based heterostructures: Current trend and development in electrochemical energy storage devices[J]. Prog. Energ Combust., 2023,97101097. doi: 10.1016/j.pecs.2023.101097

    21. [21]

      Zeng Z H, Wu N, Wei J J, Yang Y F, Wu T T, Li B, Hauser S B, Yang W D, Liu J R, Zhao S Y. Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding[J]. Nano-Micro Lett., 2022,14(1)59. doi: 10.1007/s40820-022-00800-0

    22. [22]

      Chen Y X, Xi B J, Huang M, Shi L L, Huang S Z, Guo N N, Li D, Ju Z C, Xiong S L. Defect-selectivity and"order-in-disorder"engineering in carbon for durable and fast potassium storage[J]. Adv. Mater., 2022,34(7)2108621. doi: 10.1002/adma.202108621

    23. [23]

      Yuan F, Shi C H, Li Q L, Wang J, Zhang D, Wang Q J, Wang H, Li Z J, Wang W, Wang B. Unraveling the effect of intrinsic carbon defects on potassium storage performance[J]. Adv. Funct. Mater., 2022,32(48)2208966. doi: 10.1002/adfm.202208966

    24. [24]

      Cai M T, Zhang H H, Zhang Y G, Xiao B S, Wang L, Li M, Wu Y, Sa B S, Liao H G, Zhang L. Boosting the potassium -ion storage performance enabled by engineering of hierarchical MoSSe nanosheets modified with carbon on porous carbon sphere[J]. Sci. Bull., 2022,67(9):933-945. doi: 10.1016/j.scib.2022.02.007

    25. [25]

      Wang X Y, Wang Z Y, Qiu J S. Stabilizing MXene by hydration chemistry in aqueous solution[J]. Angew. Chem., 2021,133(51):26791-26795. doi: 10.1002/ange.202113981

    26. [26]

      Liu L Y, Orbay M T, Luo S, Duluard S, Shao H, Harmel J, Rozier P, Taberna P L, Simon P. Exfoliation and delamination of Ti3C2Tx MXene prepared via molten salt etching route[J]. ACS Nano, 2021,16(1):111-118.

    27. [27]

      Hilal M, Yang W, Hwang Y, Xie W F. Tailoring MXene thickness and functionalization for enhanced room-temperature trace NO2 sensing[J]. Nano-Micro Lett., 2024,16(1):1-16. doi: 10.1007/s40820-023-01222-2

    28. [28]

      Deger C, Tan S, Houk K, Yang Y, Yavuz I. Lattice strain suppresses point defect formation in halide perovskites[J]. Nano Res., 2022,15(6):5746-5751. doi: 10.1007/s12274-022-4141-9

    29. [29]

      Shi T, Su Z X, Li J, Liu C G, Yang J X, He X F, Yun D, Peng Q, Lu C Y. Distinct point defect behaviours in body-centered cubic medium-entropy alloy NbZrTi induced by severe lattice distortion[J]. Acta Mater., 2022,229117806. doi: 10.1016/j.actamat.2022.117806

    30. [30]

      Cao M Y, Li Z L, Zhao X J, Gong X. Achieving ultrahigh efficiency vacancy-ordered double perovskite microcrystals via ionic liquids[J]. Small, 2022,18(44)2204198. doi: 10.1002/smll.202204198

    31. [31]

      Zhang P B, Li Y G, Zhao J J. Materials selection for nuclear applications in view of divacancy energies by comprehensive first-principles calculations[J]. J. Nucl. Mater., 2020,538152253. doi: 10.1016/j.jnucmat.2020.152253

    32. [32]

      Zhan C, Naguib M, Lukatskaya M, Kent P R C, Gogotsi Y, Jiang D E. Understanding the MXene pseudocapacitance[J]. J. Phys. Chem. Lett., 2018,9(6):1223-1228. doi: 10.1021/acs.jpclett.8b00200

    33. [33]

      Javed M S, Zhang X F, Ali S, Mateen A, Idrees M, Sajjad M, Batool S, Ahmad A, Imran M, Najam T. Heterostructured bimetallic-sulfide@layered Ti3C2Tx-MXene as a synergistic electrode to realize high-energy-density aqueous hybrid-supercapacitor[J]. Nano Energy, 2022,101107624. doi: 10.1016/j.nanoen.2022.107624

    34. [34]

      Song F, Hu J, Li G H, Wang J, Chen S J, Xie X Q, Wu Z J, Zhang N. Room-temperature assembled MXene-based aerogels for high mass-loading sodium-ion storage[J]. Nano-Micro Lett., 2021,14(1)37.

    35. [35]

      Jin Y, Ao H, Qi K, Zhang X, Liu M, Zhou T, Wang S. A high-rate, long life and anti-self-discharge aqueous N-doped Ti3C2/Zn hybrid capacitor[J]. Mater. Today Energy, 2021,19100598. doi: 10.1016/j.mtener.2020.100598

    36. [36]

      Zhang Z R, Yao Z P, Zhang X, Jiang Z H. 2D carbide MXene under postetch low-temperature annealing for high-performance supercapacitor electrode[J]. Electrochim. Acta, 2020,359136960. doi: 10.1016/j.electacta.2020.136960

    37. [37]

      Venkateshalu S, Grace A N. Ti 3C2Tx MXene and vanadium nitride/porous carbon as electrodes for asymmetric supercapacitors[J]. Electrochim. Acta, 2020,341136035. doi: 10.1016/j.electacta.2020.136035

    38. [38]

      Pan Z H, Cao F, Hu X, Ji X H. A facile method for synthesizing CuS decorated Ti3C2 MXene with enhanced performance for asymmetric supercapacitors[J]. J. Mater. Chem. A, 2019,7(15):8984-8992. doi: 10.1039/C9TA00085B

    39. [39]

      Yang X, Wang Q, Zhu K, Ye K, Wang G L, Cao D X, Yan J. 3D porous oxidation-resistant MXene/graphene architectures induced by in situ zinc template toward high-performance supercapacitors[J]. Adv. Funct. Mater., 2021,31(20)2101087. doi: 10.1002/adfm.202101087

    40. [40]

      Li H X, Gong Y, Zhou H H, Li J, Yang K, Mao B Y, Zhang J C, Shi Y, Deng J H, Mao M X, Huang Z Y, Jiao S Q, Kuang Y F, Zhao Y L, Luo S L. Ampere-hour-scale soft-package potassium-ion hybrid capacitors enabling 6-minute fast-charging[J]. Nat. Commun., 2023,14(1)6407. doi: 10.1038/s41467-023-42108-6

    41. [41]

      Zhang S L, Ying H J, Yuan B, Hu R Z, Han W Q. Partial atomic tin nanocomplex pillared Few-layered Ti3C2Tx MXenes for superior lithium-ion storage[J]. Nano-Micro Lett., 2020,12(1)78. doi: 10.1007/s40820-020-0405-7

    42. [42]

      Gao J Y, Wang G R, Wang W T, Yu L, Peng B, El-Harairy A, Li J, Zhang G Q. Engineering electronic transfer dynamics and ion adsorption capability in dual -doped carbon for high-energy potassium ion hybrid capacitors[J]. ACS Nano, 2022,16(4):6255-6265. doi: 10.1021/acsnano.2c00140

    43. [43]

      Zheng S H, Ma J X, Fang K X, Li S W, Qin J Q, Li Y G, Wang J M, Zhang L Z, Zhou F, Liu F Y, Wang K, Wu Z S. High-voltage potassium ion micro-supercapacitors with extraordinary volumetric energy density for wearable pressure sensor system[J]. Adv. Energy Mater., 2021,11(17)2003835. doi: 10.1002/aenm.202003835

    44. [44]

      Sun C L, Xu X, Gui C L, Chen F Z, Wang Y A, Chen S Z, Shao M H, Wang J H. High-quality epitaxial N doped graphene on SiC with tunable interfacial interactions via electron/ion bridges for stable lithium-ion storage[J]. Nano-Micro Lett., 2023,15(1)202. doi: 10.1007/s40820-023-01175-6

    45. [45]

      Ibragimova R, Rinke P, Komsa H P. Native vacancy defects in MXenes at etching conditions[J]. Chem. Mater., 2022,34(7):2896-2906. doi: 10.1021/acs.chemmater.1c03179

    46. [46]

      Wang D S, Gao Y, Liu Y H, Gogotsi Y, Meng X, Chen G, Wei Y J. Investigation of chloride ion adsorption onto Ti2C MXene monolayers by first‐principles calculations[J]. J. Mater. Chem. A, 2017,5(47):24720-24727. doi: 10.1039/C7TA09057A

  • 加载中
    1. [1]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . 二维材料基超级电容器的容量与倍率性能提升策略. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    2. [2]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    3. [3]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    4. [4]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    5. [5]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    6. [6]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    7. [7]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    8. [8]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    9. [9]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    10. [10]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    11. [11]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    12. [12]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    13. [13]

      Hongyi Zhang Zhihong Shi Zhijun Zhang . A New Strategy for “De-formulized” Calculation of Dynamic Buffer Capacity in Analytical Chemistry Education. University Chemistry, 2024, 39(3): 390-394. doi: 10.3866/PKU.DXHX202309030

    14. [14]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    15. [15]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    16. [16]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    17. [17]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    18. [18]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    19. [19]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    20. [20]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

Metrics
  • PDF Downloads(19)
  • Abstract views(1197)
  • HTML views(250)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return