Citation: Long TANG, Yaxin BIAN, Luyuan CHEN, Xiangyang HOU, Xiao WANG, Jijiang WANG. Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180 shu

Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands

Figures(17)

  • Three coordination polymers [Mn(epda)(2,2′-bipy)(H2O)] (1), [Mn(epda)(phen)] (2), and [Co2(epda)2(bpe)2(H2O)4]·5H2O (3) (H2epda=5-ethyl-pyridine-2,3-dicarboxylic acid, 2,2′-bipy=2,2′-bipyridine, phen=phenanthroline, bpe=1,2-bis(4-pyridyl) ethylene) were synthesized by solvothermal reactions and characterized by single-crystal X-ray diffraction, thermogravimetric analyses, IR spectroscopy and elemental analysis. 1 displays a 1D chain structure, and these chains are joined by O—H…O hydrogen bonding and π-π stacking interactions to generate a 2D layer structure. 2 displays a 2D layer structure, and adjacent layers are generated 3D architecture through π-π stacking interactions. 3 displays a 1D chain structure, and adjacent chains are generated double layer structure through O—H…O hydrogen bonding. The fluorescent properties of 1 and 3 indicate that they can potentially be used as a luminescent sensor. 1 was highly selective and sensitive towards o-nitrophenol through different detection mechanisms, however, 3 was highly selective and sensitive towards 2,4,6-trinitrophenol. In addition, the magnetic behavior of 2 has also been investigated.
  • 加载中
    1. [1]

      Zhai Q G, Bu X H, Zhao X, Li D S, Feng P Y. Pore space partition in metal-organic frameworks. Acc. Chem. Res., 2017, 50: 407-417  doi: 10.1021/acs.accounts.6b00526

    2. [2]

      Park J, Xu M, Li F Y, Zhou H C. 3D long-range triplet migration in a water-stable metal-organic framework for upconversion-based ultralow-power in vivo imaging. J. Am. Chem. Soc., 2018, 140: 5493-5499  doi: 10.1021/jacs.8b01613

    3. [3]

      Liang Z B, Qu C, Xia D G, Zou R Q, Xu Q. Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion. Angew. Chem. Int. Ed., 2018, 57: 9604-9633  doi: 10.1002/anie.201800269

    4. [4]

      Yang X G, Ma L F, Yan D P. Facile synthesis of 1D organic-inorganic perovskite micro-belts with high water stability for sensing and photonic applications. Chem. Sci., 2019, 10: 4567-4572  doi: 10.1039/C9SC00162J

    5. [5]

      Li Y, Mo Z W, Zhang X W, Zheng K, Zhou D D, Zhang J P. A metal-ligand layer compatible with various types of pillars for new porous coordination polymers. Cryst. Growth Des., 2020, 20: 7021-7026  doi: 10.1021/acs.cgd.0c01078

    6. [6]

      Chen L Y, Xu Q. Metal-organic framework composites for catalysis. Matter, 2019, 1: 57-89  doi: 10.1016/j.matt.2019.05.018

    7. [7]

      Rachuri Y, Parmar B, Bisht K K, Suresh E. Mixed ligand two dimensional Cd(Ⅱ)/Ni(Ⅱ) metal-organic frameworks containing dicarboxylate and tripodal N-donor ligands: Cd(Ⅱ) MOF is an efficient luminescent sensor for detection of picric acid in aqueous media. Dalton Trans., 2016, 45: 7881-7892  doi: 10.1039/C6DT00753H

    8. [8]

      Das A, Das S, Trivedi V, Biswas S. A dual functional MOF-based fluorescent sensor for intracellular phosphate and extracellular 4-nitrobenzaldehyde. Dalton Trans., 2019, 48: 1332-1343  doi: 10.1039/C8DT03964J

    9. [9]

      Wang J, Wu J, Lu L, Xu H J, Trivedi M, Kumar A, Liu J Q, Zheng M B. A new 3D 10-connected Cd(Ⅱ) based MOF with mixed ligands: A dual photoluminescent sensor for nitroaromatics and ferric ion. Front. Chem., 2019, 7: 244  doi: 10.3389/fchem.2019.00244

    10. [10]

      Sun Y, Zhang N, Guan Q L, Liu C H, Li B, Zhang K Y, Li G H, Xing Y H, Bai F Y, Sun L X. Sensing of Fe3+ and Cr2O72- in water and white light: Synthesis, characterization, and fluorescence properties of a crystalline bismuth-1,3,5-benzenetricarboxylic acid framework. Cryst. Growth Des., 2019, 19: 7217-7229  doi: 10.1021/acs.cgd.9b01098

    11. [11]

      Qin J H, Huang Y D, Zhao Y, Yang X G, Li F F, Wang C, Ma L F. Highly dense packing of chromophoric linkers achievable in a pyrene-based metal-organic framework for photoelectric response. Inorg. Chem., 2019, 58: 15013-15016  doi: 10.1021/acs.inorgchem.9b02203

    12. [12]

      Wu Y P, Xu G W, Dong W W, Zhao J, Li D S, Zhang J, Bu X H. Anionic lanthanide MOFs as a platform for iron-selective sensing systematic color tuning, and efficient nanoparticle catalysis. Inorg. Chem., 2017, 56: 1402-1411  doi: 10.1021/acs.inorgchem.6b02476

    13. [13]

      Tang L, Wang H H, Fu Y H, Wang Y T, Wang J J, Hou X Y. Three cobalt-based coordination polymers with tripodal carboxylate and imidazole-containing ligands: Syntheses, structures, properties and DFT studies. RSC Adv., 2019, 9: 38902-38911  doi: 10.1039/C9RA07737E

    14. [14]

      Li X L, Liu G Z, Xin L Y, Wang L Y. Three Zn(Ⅱ) metal-organic frameworks assembled from a versatile tecton 5-ethyl-pyridine-2,3-dicarboxylate and dipyridyl-type coligand. CrystEngComm, 2012, 14: 1729-1736  doi: 10.1039/C1CE06050C

    15. [15]

      Tang L, Shi D Q, Wang Y L, Yin S Y, Wang J J, Hou X Y. Structures and properties of two pillared-layer Mn(Ⅱ) MOFs with 5-ethyl-pyridine-2,3-dicarboxylate. Chin. J. Struct. Chem., 2019, 38: 1600-1608

    16. [16]

      Sheldrick G M. SADABS, A program for empirical absorption correction of area detector data. University of Göttingen, Germany, 2008.

    17. [17]

      Sheldrick G M. SHELXS-2014/7, Program for crystal structure solution. University of Göttingen, Germany, 2014.

    18. [18]

      Sheldrick G M. SHELXL-2014/7, Program for crystal structure refinement. University of Göttingen, Germany, 2014.

    19. [19]

      Gong Y, Hao Z, Sun J L, Shi H F, Jiang P G, Lin J H. Metal(Ⅱ) complexes based on 1,4-bis(3-pyridylaminomethyl)benzene: Structures, photoluminescence and photocatalytic properties. Dalton Trans., 2013, 42: 13241-13250  doi: 10.1039/c3dt51188j

    20. [20]

      Song S Y, Song X Z, Zhao S N, Qin C, Su S Q, Zhu M, Hao Z M, Zhang H J. Syntheses, structures and physical properties of transition metal-organic frameworks assembled from trigonal heterofunctional ligands. Dalton Trans., 2012, 41: 10412-10421  doi: 10.1039/c2dt30826f

    21. [21]

      Zhang L L, Wang X B, Hu M. Crystal structures and photoluminescent properties of two d10 metal coordination polymers based on 5-aminodiacetic isophthalic acid. Inorg. Chem. Commun., 2014, 45: 75-78  doi: 10.1016/j.inoche.2014.04.009

    22. [22]

      Yang X P, Wang S Q, Zhang L J, Huang S M, Li Z P, Wang C R, Zhu T, Bo L. First NIR luminescent polymeric high-nuclearity Cd-Ln nanoclusters from a long-chain Schiff base ligand. J. Mater. Chem. C, 2016, 4: 1589-1593  doi: 10.1039/C5TC04103A

    23. [23]

      Wang D, Zhang D, Han S D, Pan J, Xue Z Z, Li J H, Wang G M. A pillared-layer strategy to construct water-stable Zn-organic frameworks for iodine capture and luminescence sensing of Fe3+. Dalton Trans., 2019, 48: 602-608  doi: 10.1039/C8DT04091E

    24. [24]

      Wen G X, Han M L, Wu X Q, Wu Y P, Dong W W, Zhao J, Li D S, Ma L F. A multi-responsive luminescent sensor based on a super-stable sandwich-type terbium(Ⅲ)-organic framework. Dalton Trans., 2016, 45: 15492-15499  doi: 10.1039/C6DT03057B

    25. [25]

      Zhang Q S, Wang J, Kirillov A M, Dou W, Xu C, Xu C L, Yang L Z, Fang R, Liu W S. Multifunctional Ln-MOF luminescent probe for efficient sensing of Fe3+, Ce3+, and acetone. ACS Appl. Mater. Interfaces, 2018, 10: 23976-23986  doi: 10.1021/acsami.8b06103

    26. [26]

      Ju P, Zhang E S, Jiang L, Zhang Z, Hou X Y, Zhang Y Q, Yang H, Wang J J. A novel microporous Tb-MOF fluorescent sensor for highly selective and sensitive detection of picric acid. RSC Adv., 2018, 8: 21671-21678  doi: 10.1039/C8RA02602E

    27. [27]

      Hou B L, Tian D, Liu J, Dong L Z, Li S L, Li D S, Lan Y Q. A water-stable metal-organic framework for highly sensitive and selective sensing of Fe3+ ion. Inorg. Chem., 2016, 55: 10580-10586  doi: 10.1021/acs.inorgchem.6b01809

    28. [28]

      Wu K, Hu J S, Shi S N, Li J X, Cheng X F. A thermal stable pincer-MOF with high selective and sensitive nitro explosive TNP, metal ion Fe3+ and pH sensing in aqueous solution. Dyes Pigment., 2020, 173: 107993  doi: 10.1016/j.dyepig.2019.107993

    29. [29]

      Zhou X H, Li L, Li H H, Li A, Yang T, Huang W. A flexible Eu(Ⅲ)-based metal-organic framework: Turn-off luminescent sensor for the detection of Fe(Ⅲ) and picric acid. Dalton Trans., 2013, 42: 12403-12409  doi: 10.1039/c3dt51081f

    30. [30]

      WANG G F, SUN S W, SONG S F, LÜ M. Synthesis of a Cd(Ⅱ)-based coordination polymer for luminescence detecting 2,4,6-trinitrophenol. Chinese J. Inorg. Chem., 2023, 39(12): 2407-2414  doi: 10.11862/CJIC.2023.197

  • 加载中
    1. [1]

      Xiaxia LIUXiaofang MALuxia GUOXianda HANSisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269

    2. [2]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    3. [3]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    4. [4]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    5. [5]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    6. [6]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    7. [7]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    8. [8]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    9. [9]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    10. [10]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    11. [11]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    12. [12]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    13. [13]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    14. [14]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    15. [15]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    16. [16]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    17. [17]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    18. [18]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    19. [19]

      Yue Mao Zhonghang Chen Tiankai Sun Wenyue Cui Peng Cheng Wei Shi . Luminescent coordination polymers with mixed carboxylate and triazole ligands for rapid detection of chloroprene metabolite. Chinese Journal of Structural Chemistry, 2024, 43(9): 100353-100353. doi: 10.1016/j.cjsc.2024.100353

    20. [20]

      Zhendong LiuSainan LiuBin LiuQi MengMeng YuanChunzheng YangYulong BianPing'an MaJun Lin . Fe(Ⅲ)-juglone nanoscale coordination polymers for cascade chemodynamic therapy through synergistic ferroptosis and apoptosis strategy. Chinese Chemical Letters, 2024, 35(11): 109626-. doi: 10.1016/j.cclet.2024.109626

Metrics
  • PDF Downloads(1)
  • Abstract views(329)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return