Citation: Xiaowei TANG, Shiquan XIAO, Jingwen SUN, Yu ZHU, Xiaoting CHEN, Haiyan ZHANG. A zinc complex for the detection of anthrax biomarker[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173 shu

A zinc complex for the detection of anthrax biomarker

  • Corresponding author: Haiyan ZHANG, 13766559005@163.com
  • Received Date: 14 May 2024
    Revised Date: 26 June 2024

Figures(12)

  • A novel metal coordination polymer {[Zn2(L)(H2O)(DMA)] ·DMA·2.3H2O}n (1) has been isolated under solvothermal method, where L4- is the four-deprotonated N, N'-bis(4-carboxybenzyl)-5-aminoisophthalic acid and DMA is N, N-dimethylacetamide. Single crystal X-ray diffraction results showed that the complex belongs to the triclinic crystal system with the space group of P1, a=0.989 6(5) nm, b=1.370 5(5) nm, c=1.382 1(5) nm, α = 80.067(5)°, β =76.729(5)°, γ =76.611(5)° and the structure of complex 1 is a 3D supramolecular framework that expanded by 2D metal-organic layers through ππ interactions. Interestingly, a"bowl"shaped structure exists in the 2D layer, and the center of the"bowl"is a cavity with a size of about 1.493 nm×1.503 nm, which can be used to load a certain volume of guest molecules. Infrared spectroscopy verified the successful coordination of zinc ions with the L4- ligand. Powder X-ray diffraction (PXRD) experiments confirmed that complex 1 had high purity. Thermo-gravimetric analysis showed that complex 1 had good thermal stability in a range from room temperature to 416.9 ℃. Under the excitation light of 273 nm, complex 1 exhibited strong fluorescence emission at 437 nm in an ethanol solution, which could quickly detect the anthrax biomarker of pyridine-2, 6-dicarboxylic acid (DPA) through fluorescence quenching within 30 s. The results of concentration-dependent experiments showed that there was a good linear relationship between the concentration of DPA and the fluorescence intensity of complex 1, with R2=0.996 51 and a quenching constant value of 4.052×104 L·mol-1. The calculated limit of detection was approximately 15 μmol·L-1, which was significantly lower than the infection dose of anthrax spores (60 μmol·L-1). After adding various inter-ferents to the solution of complex 1, the change in fluorescence intensity of complex 1 was negligible. However, when DPA was added, the fluorescence intensity decreased significantly, indicating that complex 1 had a high selectivity for DPA. The detection mechanism was revealed by combining PXRD patterns and UV-Vis absorption spectra, which is fluorescence quenching induced by the collapse of the crystal framework.
  • 加载中
    1. [1]

      Luan K, Meng R Q, Shan C F, Cao J, Jia J G, Liu W S, Tang Y. Terbium functionalized micelle nanoprobe for ratiometric fluorescence detection of anthrax spore biomarker[J]. Anal. Chem., 2018,90(5):3600-3607. doi: 10.1021/acs.analchem.8b00050

    2. [2]

      Halawa M I, Li B S, Xu G B. Novel synthesis of thiolated gold nanoclusters induced by lanthanides for ultrasensitive and luminescent detection of the potential anthrax spores′ biomarker[J]. ACS Appl. Mater. Interfaces, 2020,12(29):32888-32897. doi: 10.1021/acsami.0c10069

    3. [3]

      Huan T N, Ganesh T, Han S H, Yoon M Y, Chung H. Sensitive detection of an anthrax biomarker using a glassy carbon electrode with a consecutively immobilized layer of polyaniline/carbon nanotube/peptide[J]. Biosens. Bioelectron., 2011,26(10):4227-4230. doi: 10.1016/j.bios.2011.03.034

    4. [4]

      Luo Y Q, Zhang L, Zhang L Y, Yu B H, Wang Y J, Zhang W B. Multiporous terbium phosphonate coordination polymer microspheres as fluorescent probes for trace anthrax biomarker detection[J]. ACS Appl. Mater. Interfaces, 2019,11(17):15998-16005. doi: 10.1021/acsami.9b01123

    5. [5]

      Yilmaz M D, Oktem H A. Ultraspecific multiplexed detection of low-abundance single-nucleotide variants by combining a masking tactic with fluorescent nanoparticle counting[J]. Anal. Chem., 2018,90(6):4221-4225. doi: 10.1021/acs.analchem.8b00576

    6. [6]

      Cheung M, Lee W W, Cowcher D P, Goodacre R, Bell S E. SERS of meso-droplets supported on superhydrophobic wires allows exquisitely sensitive detection of dipicolinic acid, an anthrax biomarker, considerably below the infective dose[J]. Chem. Commun., 2016,52(64):9925-9928. doi: 10.1039/C6CC03521C

    7. [7]

      Fichtel J, Sass H, Rullkötter J. Assessment of spore contamination in pepper by determination of dipicolinic acid with a highly sensitive HPLC approach[J]. Food Control, 2008,19:1006-1010. doi: 10.1016/j.foodcont.2007.09.006

    8. [8]

      Li D, Truong T V, Bills T M, Holt B C, Vanderwerken D N, Williams J R, Acharya A, Robison R A, Tolley H D, Lee M L. GC/MS method for positive detection of Bacillus anthracis endospores[J]. Anal. Chem., 2012,84(3):1637-1644. doi: 10.1021/ac202606x

    9. [9]

      King D, Luna V, Cannons A, Cattani J, Amuso P. Performance assessment of three commercial assays for direct detection of Bacillus anthracis spores[J]. J. Clin. Microbiol., 2003,41:3454-3455. doi: 10.1128/JCM.41.7.3454-3455.2003

    10. [10]

      Hang J, Sundaram A K, Zhu P X, Shelton D R, Karns J S, Martin P A W, Li S H, Amstutz P, Tang C M. Development of a rapid and sensitive immunoassay for detection and subsequent recovery of Bacillus anthracis spores in environmental samples[J]. J. Microbiol. Methods, 2008,73(3):242-246. doi: 10.1016/j.mimet.2008.02.018

    11. [11]

      Gao N, Zhang Y F, Huang P C, Xiang Z H, Wu F Y, Mao L Q. Perturbing tandem energy transfer in luminescent heterobinuclear lanthanide coordination polymer nanoparticles enables real-time monitoring of release of the anthrax biomarker from bacterial spores[J]. Anal. Chem., 2018,90(11):7004-7011. doi: 10.1021/acs.analchem.8b01365

    12. [12]

      Zhou Y X, Yu B, Levon K. Potentiometric sensor for dipicolinic acid[J]. Biosens. Bioelectron., 2005,20(9):1851-1855. doi: 10.1016/j.bios.2004.05.005

    13. [13]

      Liu L Y, Zhu X D, Zeng Y B, Wang H L, Lu Y X, Zhang J, Yin Z Z, Chen Z D, Yang Y W, Li L. An electrochemical sensor for diphenylamine detection based on reduced graphene oxide/Fe3O4-molecularly imprinted polymer with 1, 4-butanediyl-3, 3′-bis-l-vinylimidazolium dihexafluorophosphate ionic liquid as cross-linker[J]. Polymers, 2018,10(12)1329. doi: 10.3390/polym10121329

    14. [14]

      LIANG J L, HU B, LI R Y, LIU L R, JIANG L J, SUN J W. Synthesis of Eu(Ⅲ) functionalized metal-organic framework and fluorescence sensing for 1-naphthol[J]. Journal of Synthetic Crystals, 2023,52(11):2041-2049.

    15. [15]

      LIU Y, FAN G, GAO F Q, HOU L, ZHU D Y, WANG Y Y. A terbium complex for the detection of dimetridazole and tetracycline in an aqueous solution[J]. Chinese J. Inorg. Chem., 2023,39(7):1235-1243. doi: 10.11862/CJIC.2023.116

    16. [16]

      ZHAO P R, LIU Y Q, HE C, DUAN C Y. A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene[J]. Chinese J. Inorg. Chem., 2024,40(4):713-724.  

    17. [17]

      Ding M L, Flaig R W, Jiang H L, Yaghi O M. Carbon capture and conversion using metal-organic frameworks and MOF-based materials[J]. Chem. Soc. Rev., 2019,48(10):2783-2828. doi: 10.1039/C8CS00829A

    18. [18]

      Horike S, Nagarkar S S, Ogawa T, Kitagawa S. Kinetic gate-opening process in a flexible porous coordination polymer[J]. Angew. Chem. Int. Ed., 2020,59:6652-6664. doi: 10.1002/anie.201911384

    19. [19]

      Gupta M, De D, Pal S, Pal T K, Tomar K. A porous two-dimensional Zn(Ⅱ)-coordination polymer exhibiting SC-SC transmetalation with Cu(Ⅱ): Efficient heterogeneous catalysis for the Henry reaction and detection of nitro explosives[J]. Dalton Trans., 2017,46(23):7619-7627. doi: 10.1039/C7DT01074E

    20. [20]

      Ni X L, Xiao X, Cong H, Liang L L, Cheng K, Cheng X J, Ji N N, Zhu Q J, Xue S F, Tao Z. Cucurbit[n]uril-based coordination chemistry: From simple coordination complexes to novel poly-dimensional coordination polymers[J]. Chem. Soc. Rev., 2013,42(24):9480-9508. doi: 10.1039/c3cs60261c

    21. [21]

      Xu D D, Li Y, Yin S C, Huang F H. Strategies to address key challenges of metallacycle/metallacage-based supramolecular coordination complexes in biomedical applications[J]. Chem. Soc. Rev., 2024,53(6):3167-3204. doi: 10.1039/D3CS00926B

    22. [22]

      KANG X Q, WANG J H, GU J Z. Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), nickel(Ⅱ) and cobalt(Ⅱ) coordination polymers constructed from 4, 4′-(pyridin-3, 5-diyl)dibenzoic acid[J]. Chinese J. Inorg. Chem., 2023,39(12):2385-2392. doi: 10.11862/CJIC.2023.190

    23. [23]

      GAO W K, XU Y, LI Y, WANG H W, CHANG J W. Naphthalene bisphosphonate manganese coordination polymer: Synthesis, crystal structure, and magnetic properties[J]. Chemical Reagents, 2024,46(2):61-66.

    24. [24]

      MA J X, LIU X D, XU N, LIU G C, WANG X L. A multi-functional Zn(Ⅱ) coordination polymer with luminescence sensing, Amperometric sensing, and dye adsorption performance[J]. Chem. J. Chinese Universities, 2022,43(1):113-119.

    25. [25]

      Duan X Y, Meng Q J, Su Y, Li Y Z, Duan C Y, Ren X M, Lu C S. Multifunctional polythreading coordination polymers: Spontaneous resolution, nonlinear-optic, and ferroelectric properties[J]. Chem.-Eur. J., 2011,17(36):9936-9943.

    26. [26]

      Gao L, Liu Y Y. Two Zn(Ⅱ)-based coordination polymers: Luminescent property and protective activity on optic neuritis by regulating MAPK-AKT signaling pathway[J]. Mon. Chem., 2020,151(6):889-897.

    27. [27]

      LI Z H, LUO L L, WAN C Q, HU Y Q, ZHOU R H, LI X. Cu(Ⅱ)/Zn(Ⅱ) coordination polymers constructed by 3-(4′-carboxy-phenoxy)benzoic acid: Synthesis, crystal structure and as a fluorescence sensor to acetone and Tb3+ ion[J]. Chinese J. Inorg. Chem., 2021,37(8):1381-1389.  

    28. [28]

      Zhao L, Han Y, Guo G L, Bai H L, Wang Z X, Jing H W, Song G Y, Wang Z Y, Li J Y, Li J. Application of three Ln(Ⅲ)-coordination polymers in fields of luminescence, antibacteria and detection of Fe3+ and 4-nitrophenol[J]. J. Rare Earth, 2023,41(9):1392-1397.

    29. [29]

      Gong Y Y, Li J M, Wang N R, Li X. Synthesis and characterization of a europium coordination polymer as a fluorescent sensor for the selective detection of PO43-, DTZ, and NFT[J]. J. Solid State Chem., 2024,330124485.

    30. [30]

      Liu J Q, Luo Z D, Pan Y, Singh A K, Trivedi M, Kumar A. Recent developments in luminescent coordination polymers: Designing strategies, sensing application and theoretical evidences[J]. Coord. Chem. Rev., 2020,406213145.

    31. [31]

      Ding G, Wang M, Tian M, Li Y F, Yang T, Zhou X H, Xiao H P, You Y J. Anthracene-based lanthanide coordination polymer for the sensitive detection of 2-thiazolidinethione-4-carboxylic acid and temperature[J]. J. Solid State Chem., 2023,323124065.

    32. [32]

      Lunev A M, Belousov Y A. Luminescent sensor materials based on rare‑earth element complexes for detecting cations, anions, and small molecules[J]. Russ. Chem. Bull., 2022,71(5):825-857.

    33. [33]

      Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K, Puschmann H. OLEX2: A complete structure solution, refinement and analysis program[J]. J. Appl. Crystallogr., 2009,42(2):339-341.

    34. [34]

      Sheldrick G M. Crystal structure refinement with SHELXL[J]. Acta Crystallogr. Sect. C, 2015,C71:3-8.

    35. [35]

      Ge F Y, Sun G H, Meng L, Ren S S, Zheng H G. Four new luminescent metal-organic frameworks as multifunctional sensors for detecting Fe3+, Cr2O72- and nitromethane[J]. Cryst. Growth Des., 2020,20(3):1898-1904.

    36. [36]

      Wu L H, Yao S L, Xu H, Zheng T F, Liu S J, Chen J L, Li N, Wen H R. Highly selective and turn-on fluorescence probe with red shift emission for naked-eye detecting Al3+ and Ga3+ based on metal‑ organic framework[J]. Chin. Chem. Lett., 2022,33(1):541-546.

    37. [37]

      Lin C H, Zou Z F, Lei Z W, Wang L, Song Y H. Fluorescent metal-organic frameworks MIL-101(Al)-NH2 for rapid and sensitive detection of ellagic acid[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2020,242118739.

    38. [38]

      Gehlen M H. The centenary of the Stern-Volmer equation of fluorescence quenching: From the single line plot to the SV quenching map[J]. J. Photochem. Photobiol. C-Photochem. Rev., 2020,42100338.

    39. [39]

      Wang J, Jiang M, Yan L, Peng R, Huangfu M J, Guo X X, Li Y, Wu P Y. Multifunctional luminescent Eu(Ⅲ)-based metal-organic framework for sensing methanol and detection and adsorption of Fe(Ⅲ) ions in aqueous solution[J]. Inorg. Chem., 2016,55(24):12660-12668.

    40. [40]

      Hao J N, Yan B. A water-stable lanthanide-functionalized MOF as a highly selective and sensitive fluorescent probe for Cd2+[J]. Chem. Commun., 2015,51(36):7737-7740.

    41. [41]

      Shi K Y, Yang Z C, Dong L H, Yu B. Dual channel detection for anthrax biomarker dipicolinic acid: The combination of an emission turn on probe and luminescent metal-organic frameworks[J]. Sens. Actuator B-Chem., 2018,266:263-269.

    42. [42]

      Chen L, Fang Z G. Modifying luminescent metal-organic frameworks with rhodamine dye: Aiming at the optical sensing of anthrax biomarker dipicolinic acid[J]. Inorg. Chim. Acta, 2018,477:51-58.

    43. [43]

      Wu D, Zhang Z, Chen X W, Meng L K, Li C G, Li G H, Chen X B, Shi Z, Feng S H. A non-luminescent Eu-MOF-based "turn-on" sensor towards an anthrax biomarker through single-crystal to single-crystal phase transition[J]. Chem. Commun., 2019,55(99):14918-14921.

    44. [44]

      Pellegrino P M, Fell N F, Rosen D L, Gillespie J B. Bacterial endospore detection using terbium dipicolinate photoluminescence in the presence of chemical and biological materials[J]. Anal. Chem., 1998,70(9):1755-1760.

    45. [45]

      Cong Z Z, Zhu M C, Zhang Y, Yao W, Kosinova M, Fedin V P, Wu S Y, Gao E J. Three novel metal-organic frameworks with different coordination modes for trace detection of anthrax biomarkers[J]. Dalton Trans., 2022,51(1):250-256.

  • 加载中
    1. [1]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    2. [2]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    3. [3]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    4. [4]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    5. [5]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    6. [6]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    7. [7]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    8. [8]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    9. [9]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    11. [11]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    12. [12]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    13. [13]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    14. [14]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    15. [15]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    16. [16]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    17. [17]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    18. [18]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    19. [19]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    20. [20]

      Jing RENRuikui YANXiaoli CHENHuali CUIHua YANGJijiang WANG . Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 574-586. doi: 10.11862/CJIC.20240287

Metrics
  • PDF Downloads(1)
  • Abstract views(552)
  • HTML views(87)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return