Citation: Bin HE, Hao ZHANG, Lin XU, Yanghe LIU, Feifan LANG, Jiandong PANG. Recent progress in multicomponent zirconium?based metal-organic frameworks[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161 shu

Recent progress in multicomponent zirconium?based metal-organic frameworks

Figures(11)

  • Zirconium‐based metal-organic frameworks (Zr-MOFs) have emerged as one of the most promising crystalline porous framework materials for various applications, owing to their abundant structural varieties, excellent thermal and chemical stability as well as diverse functionalities. Incorporating organic ligands with tailored functional groups into the Zr-MOFs system via various methods such as one‐pot synthesis and post-synthetic modification enables the construction of multicomponent zirconium‐based metal-organic frameworks (MC-Zr-MOFs), allowing precise regulation over their pore environment for particular requirements. MC-Zr-MOFs have found extensive utility in gas adsorption/separation, guest molecule/ion adsorption in the solution phase, multiphase catalysis, chemical sensing, and optical materials for instance while exhibiting remarkable performance. This review aims to carefully investigate the recent advances in the synthetic strategies and novel applications of MC-Zr-MOFs, along with prospects for their future development.
  • 加载中
    1. [1]

      Shi L, Yang Z N, Sha F R, Chen Z J. Design, synthesis and applications of functional zirconium-based metal-organic frameworks[J]. Sci.China Chem., 2023,66:3383-3397. doi: 10.1007/s11426-023-1809-8

    2. [2]

      Feng L, Pang J D, She P, Li J L, Qin J S, Du D Y, Zhou H C. Metal-organic frameworks based on group 3 and 4 metals[J]. Adv. Mater., 2020,32(44)200414.

    3. [3]

      Wang K Y, Zhang J Q, Hsu Y C, Lin H Y, Han Z S, Pang J D, Yang Z T, Liang R R, Shi W, Zhou H C. Bioinspired framework catalysts: From enzyme immobilization to biomimetic catalysis[J]. Chem. Rev., 2023,123(9):5347-5420. doi: 10.1021/acs.chemrev.2c00879

    4. [4]

      Gong W, Arman H, Chen Z J, Xie Y, Son F A, Cui H, Chen X F, Shi Y S, Liu Y, Chen B L, Farha O K, Cui Y. Highly specific coordination-driven self-assembly of 2D heterometallic metal-organic frameworks with unprecedented Johnson-type (J51) nonanuclear Zr-Oxocarboxylate clusters[J]. J. Am. Chem. Soc., 2021,143(2):657-663. doi: 10.1021/jacs.0c11881

    5. [5]

      Wang F, Zhao D S, Li B, Li W Q, Zhang H H, Pang J D, Fan L M. Compositional engineering of Co(Ⅱ)MOF/carbon-based overall water splitting electrocatalysts: From synergistic effects to structure-activity relationships[J]. Cryst. Growth Des., 2022,22(5):2775-2792. doi: 10.1021/acs.cgd.2c00168

    6. [6]

      Zhang H, Sun R, Li D C, Dou J M. A review on crystalline porous MOFs materials in photocatalytic transformations of organic compounds in recent three years[J]. Chin. J. Struct. Chem., 2022,41(11)2211071.

    7. [7]

      Yang Y, Xu S T, Gai Y L, Zhang B, Chen L. Recent progress in lanthanide metal-organic frameworks (Ln-MOFs) as chemical sensors for ions, antibiotics and amino acids[J]. Chin. J. Struct. Chem., 2022,41(11)2211045.

    8. [8]

      Di Z Y, Zheng X J, Qi Y, Yuan H, Li C P. Recent advances in C2 gases separation and purification by metal-organic frameworks[J]. Chin. J.Struct. Chem., 2022,41(11)2211031.

    9. [9]

      Sun H P, Li Z X, Gu Y, Guo C X. A review on the progress of metal-organic frameworks in electrochemiluminescence sensors[J]. Chin. J.Struct. Chem., 2022,41(11)2211018.

    10. [10]

      Lang F F, Pang J D, Bu X H. Stimuli-responsive coordination polymers toward next-generation smart materials and devices[J]. eScience, 2024,1(14)100231.

    11. [11]

      Yang H M, Xue L H, Yang X G, Xu H, Gao J K. Advances in metal-organic frameworks for efficient separation and purification of natural gas[J]. Chin. J. Struct. Chem., 2023,42(2)100034. doi: 10.1016/j.cjsc.2023.100034

    12. [12]

      Li C, Zhang H, Liu M, Lang F F, Pang J D, Bu X H. Recent progress in metal-organic frameworks (MOFs) for electrocatalysis[J]. Ind. Chem.Mater., 2023,1:9-38. doi: 10.1039/D2IM00063F

    13. [13]

      Zhang H, Li C, Li Y, Pang J D, Bu X H. The advanced synthesis of MOFs-based materials in photocatalytic HER in recent three years[J]. Catalysts, 2022,121350. doi: 10.3390/catal12111350

    14. [14]

      Li Y, Pang J D, Bu X H. Multi-functional metal-organic frameworks for detection and removal of water pollutions[J]. Chem. Commun., 2022,58:7890-7908. doi: 10.1039/D2CC02738K

    15. [15]

      Kong L J, Cheng M G, Huang H, Pang J D, Liu S, Xu Y H, Bu X H. Metal-organic frameworks for advanced aqueous ion batteries and supercapacitors[J]. EnergyChem, 2022,4100090. doi: 10.1016/j.enchem.2022.100090

    16. [16]

      Vicchio S P, Chen Z, Chapman K W, Getman R B. Computational and experimental characterization of the ligand environment of a Ni-Oxo catalyst supported in the metal-organic framework NU-1000[J]. J.Am. Chem. Soc., 2023,145(5):2852-2859. doi: 10.1021/jacs.2c10554

    17. [17]

      Wang X N, Zhang P, Kirchon A, Li J L, Chen W M, Zhao Y M, Li B, Zhou H C. Crystallographic visualization of postsynthetic nickel clusters into metal-organic framework[J]. J. Am. Chem. Soc., 2019,141(34):13654-13663. doi: 10.1021/jacs.9b06711

    18. [18]

      Qin J S, Yuan S, Lollar C T, Pang J D, Alsalme A, Zhou H C. Stable metal-organic frameworks as a host platform for catalysis and biomimetics[J]. Chem. Commun., 2018,54:4231-4249. doi: 10.1039/C7CC09173G

    19. [19]

      Yuan S, Feng L, Wang K C, Pang J D, Bosch M, Lollar C T, Sun Y J, Qin J S, Yang X Y, Zhang P, Wang Q, Zou L F, Zhang Y M, Zhang L L, Fang Y, Li J L, Zhou H C. Stable metal-organic frameworks: Design, synthesis, and applications[J]. Adv. Mater., 2018,30(37)1704303. doi: 10.1002/adma.201704303

    20. [20]

      Pang J D, Lollar C T, Che S, Qin J S, Li J L, Cai P Y, Wu M Y, Yuan D Q, Hong M C, Zhou H C. Tuning the structure of Fe-tetracarboxylate frameworks through linker-symmetry reduction[J]. CCS Chem., 2021,3(2):1701-1709. doi: 10.31635/ccschem.020.202000348

    21. [21]

      Cavka J H, Jakobsen S, Olsbye U, Guilou N, lamberti C, Bordiga S, Lillerud K P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. J. Am. Chem. Soc., 2008,130(42):13850-13851. doi: 10.1021/ja8057953

    22. [22]

      Qiu Y C, Yuan S, Li X X, Du D Y, Wang C, Qin J S, Drake H F, Lan Y Q, Jiang L, Zhou H C. Face-sharing archimedean solids stacking for the construction of mixed-ligand metal-organic frameworks[J]. J. Am. Chem. Soc., 2019,141(35):13841-13848. doi: 10.1021/jacs.9b05580

    23. [23]

      Huang N, Yuan S, Drake H, Yang X Y, Pang J D, Qin J S, Li J L, Zhang Y M, Wang Q, Jiang D L, Zhou H C. Systematic engineering of single substitution in zirconium metal-organic frameworks toward high-performance catalysis[J]. J. Am. Chem. Soc., 2017,139(51):18590-18597. doi: 10.1021/jacs.7b09553

    24. [24]

      Pang J D, Yuan S, Du D Y, Lollar C T, Zhang L L, Wu M Y, Yuan D Q, Zhou H C, Hong M C. Flexible zirconium MOFs as bromine-nanocontainers for bromination reactions under ambient conditions[J]. Angew. Chem. Int. Ed., 2017,56(46):14622-14626. doi: 10.1002/anie.201709186

    25. [25]

      Pang J D, Yuan S, Qin J S, Liu C P, Lollar C T, Wu M Y, Yuan D Q, Zhou H C, Hong M C. Control the structure of Zr-tetracarboxylate frameworks through steric tuning[J]. J. Am. Chem. Soc., 2017,139(46):16939-16945. doi: 10.1021/jacs.7b09973

    26. [26]

      Huang N, Drake H, Li J L, Pang J D, Wang Y, Yuan S, Wang Q, Cai P Y, Qin J S, Zhou H C. Flexible and hierarchical metal-organic framework composites for high-performance catalysis[J]. Angew. Chem.Int. Ed., 2018,57(29):8916-8920. doi: 10.1002/anie.201803096

    27. [27]

      Qin J S, Yuan S, Zhang L, Li B, Du D Y, Huang N, Guan W, Drake H F, Pang J D, Lan Y Q, Alsalme A, Zhou H C. Creating well-defined hexabenzocoronene in zirconium metal-organic framework by postsynthetic annulation[J]. J. Am. Chem. Soc., 2019,141(5):2054-2060. doi: 10.1021/jacs.8b11042

    28. [28]

      Yang L T, Cai P Y, Zhang L L, Xu X Y, Yakovenko A A, Wang Q, Pang J D, Yuan S, Zou X D, Huang N, Huan Z H, Zhou H C. Ligand-directed conformational control over porphyrinic zirconium metal-or-ganic frameworks for size-selective catalysis[J]. J. Am. Chem. Soc., 2021,143(31):12129-12137. doi: 10.1021/jacs.1c03960

    29. [29]

      Zhang Y M, Pang J D, Li J L, Yang X Y, Feng M B, Cai P Y, Zhou H C. Visible-light harvesting pyrene-based MOFs as efficient ROS generators[J]. Chem. Sci., 2019,10(36):8455-8460. doi: 10.1039/C9SC03080H

    30. [30]

      Zhang Y M, Li J L, Yang X Y, Zhang P, Pang J D, Li B, Zhou H C. A mesoporous NNN-pincer-based metal-organic framework scaffold for the preparation of noble-metal-free catalysts[J]. Chem. Commun., 2019,55(14):2023-2026. doi: 10.1039/C8CC09491H

    31. [31]

      Cao C C, Chen C X, Wei Z W, Qiu Q F, Zhu N X, Xiong Y Y, Jiang J J, Wang D, Su C Y. Catalysis through dynamic spacer installation of multivariate functionalities in metal-organic frameworks[J]. J. Am.Chem. Soc., 2019,141(6):2589-2593. doi: 10.1021/jacs.8b12372

    32. [32]

      Xu M, Cai P Y, Meng S S, Yang Y H, Zheng D S, Zhang Q H, Gu L, Zhou H C, Gu Z Y. Linker scissoring strategy enables precise shaping of metal-organic frameworks for chromatographic separation[J]. Angew. Chem. Int. Ed., 2022,61(37)e202207786. doi: 10.1002/anie.202207786

    33. [33]

      Xu X Y, GAO L, Yuan S. Stepwise construction of multi-component metal-organic frameworks[J]. Dalton. Trans., 2023,42(52):15233-15252.

    34. [34]

      Lollar C T, Qin J S, Pang J D, Yuan S, Becker B, Zhou H C. Interior decoration of stable metal-organic frameworks[J]. Langmuir, 2018,34(46):13795-13807. doi: 10.1021/acs.langmuir.8b00823

    35. [35]

      Sun Y J, Sun L X, Feng D, Zhou H C. An in situ one-pot synthetic approach towards multivariate zirconium MOFs[J]. Angew. Chem. Int. Ed., 2016,55(22):6471-6475. doi: 10.1002/anie.201602274

    36. [36]

      Yang X Y, Yuan S, Zou L F, Drake H, Zhang Y M, Qin J S, Alsalme A, Zhou H C. One-step synthesis of hybrid core-shell metal-organic frameworks[J]. Angew. Chem. Int. Ed., 2018,57(15):3927-3932. doi: 10.1002/anie.201710019

    37. [37]

      Gui B, Meng Y, Xie Y, Tian J W, Yu G, Zeng W X, Zhang G X, Gong S L, Yang C L, Zhang D Q, Wang C. Tuning the photoinduced electron transfer in a Zr-MOF: Toward solid-state fluorescent molecular switch and turn-on sensor[J]. Adv. Mater., 2018,30(34)1802329. doi: 10.1002/adma.201802329

    38. [38]

      Jia S P, Xiao X, Li Q Y, Li Y, Duan Z G, Li Y Y, Li X T, Lin Z H, Zhao Y G, Huang W. Tuning the connectivity, rigidity, and functionality of two-dimensional Zr-based metal-organic frameworks[J]. Inorg.Chem., 2019,58(19):12748-12755. doi: 10.1021/acs.inorgchem.9b01666

    39. [39]

      Qiao G Y, Yuan S, Pang J D, Rao H, Lollar C T, Dang D B, Qin J S, Zhou H C, Yu J H. Functionalization of zirconium-based metal-organic layers with tailored pore environments for heterogeneous catalysis[J]. Angew. Chem. Int. Ed., 2020,59(41):18224-18228. doi: 10.1002/anie.202007781

    40. [40]

      Li J L, Yuan S, Qin J S, Huang L, Bose R, Pang J D, Zhang P, Xiao Z F, Tan K, Malko A V, Cagin T, Zhou H C. Fluorescence enhancement in the solid state by isolating perylene fluorophores in metal-or-ganic frameworks[J]. ACS Appl. Mater. Interfaces, 2020,12(23):26727-26732. doi: 10.1021/acsami.0c05512

    41. [41]

      Yuan S, Huang L, Huang Z H, Sun D, Qin J S, Feng L, Li J L, Zou X D, Cagin T, Zhou H C. Continuous variation of lattice dimensions and pore sizes in metal-organic frameworks[J]. J. Am. Chem. Soc., 2020,142(10):4732-4738. doi: 10.1021/jacs.9b13072

    42. [42]

      Fiankor C, Nyakuchena J, Khoo R S H, Zhang X, Hu Y C, Yang S Z, Huang J, Zhang J. Symmetry-guided synthesis of N, N'-bicarbazole and porphyrin based mixed-ligand metal-organic frameworks: Light harvesting and energy transfer[J]. J. Am. Chem. Soc., 2021,143(48):20411-20418. doi: 10.1021/jacs.1c10291

    43. [43]

      Qin J S, Yuan S, Alsalme A, Zhou H C. Flexible zirconium MOF as the crystalline sponge for coordinative alignment of dicarboxylates[J]. ACS Appl. Mater. Interfaces, 2017,9(39):33408-33412. doi: 10.1021/acsami.6b16264

    44. [44]

      Hurlock M J, Hao L D, Kriegsman K W, Guo X F, Keeffe M O, Zhang Q. Evolution of 14-connected Zr6 secondary building units through postsynthetic linker incorporation[J]. ACS Appl. Mater.Interfaces, 2021,13(44):51945-51953. doi: 10.1021/acsami.1c07701

    45. [45]

      Lollar C T, Pang J D, Qin J S, Yuan S, Powell J A, Zhou H C. Thermodynamically controlled linker installation in flexible zirconium MOFs[J]. Cryst. Growth Des., 2019,19(4):2069-2073. doi: 10.1021/acs.cgd.8b01637

    46. [46]

      Chen Y W, Idrees K B, Mian M R, Son F A, Zhang C H, Wang X J, Farha O K. Reticular design of precise linker installation into a zirconium metal-organic framework to reinforce hydrolytic stability[J]. J.Am. Chem. Soc., 2023,145(5):3055-3063. doi: 10.1021/jacs.2c11830

    47. [47]

      Yuan S, Lu W G, Chen Y P, Zhang Q, Liu T F, Feng D W, Wang X, Qin J S, Zhou H C. Sequential linker installation: Precise placement of functional groups in multivariate metal-organic frameworks[J]. J. Am. Chem. Soc., 2015,137(9):3177-3180. doi: 10.1021/ja512762r

    48. [48]

      Yuan S, Chen Y P, Qin J S, Lu W G, Zou L F, Zhang Q, Wang X, Sun X, Zhou H C. Linker installation: Engineering pore environment with precisely placed functionalities in zirconium MOFs[J]. J. Am. Chem. Soc., 2016,138(28):8912-8919. doi: 10.1021/jacs.6b04501

    49. [49]

      Zhang X, Frey B L, Chen Y S, Zhang J. Topology-guided stepwise insertion of three secondary linkers in zirconium metal-organic frameworks[J]. J. Am. Chem. Soc., 2018,140(24):7710-7715. doi: 10.1021/jacs.8b04277

    50. [50]

      Pang J D, Yuan S, Qin J S, Wu M Y, Lollar C T, Li J L, Huang N, Li B, Zhang P, Zhou H C. Enhancing pore-environment complexity using a trapezoidal linker: Toward stepwise assembly of multivariate quinary metal-organic frameworks[J]. J. Am. Chem. Soc., 2018,140(39):12328-12332. doi: 10.1021/jacs.8b07411

    51. [51]

      Hu X J, Li Z X, Xue H, Huang X S, Cao R, Liu T F. Designing a bifunctional br?nsted acid-base heterogeneous catalyst through precise installation of ligands on metal-organic frameworks[J]. CCS Chem., 2019,2(1):616-622.

    52. [52]

      Yuan S, Zhang P, Zhang L L, Garcia-Esparza A T, Sokaras D, Qin J S, Feng L, Day G S, Chen W M, Drake H F, Elumalai P, Madrahimov S T, Sun D F, Zhou H C. Exposed equatorial positions of metal centers via sequential ligand elimination and installation in MOFs[J]. J. Am. Chem. Soc., 2018,140(34):10814-10819. doi: 10.1021/jacs.8b04886

    53. [53]

      Pang J D, Yuan S, Qin J S, Lollar C T, Huang N, Li J L, Wang Q, Wu M Y, Yuan D Q, Hong M C, Zhou H C. Tuning the ionicity of stable metal-organic frameworks through ionic linker installation[J]. J. Am. Chem. Soc., 2019,141(7):3129-3136. doi: 10.1021/jacs.8b12530

    54. [54]

      Li T, Kozlowski M T, Doud E A, Blakely M N, Rosi N L. Stepwise ligand exchange for the preparation of a family of mesoporous MOFs[J]. J. Am. Chem. Soc., 2013,135(32):11688-11691. doi: 10.1021/ja403810k

    55. [55]

      Tan C X, Han X, Li Z J, Liu Y, Cui Y. Controlled exchange of achiral linkers with chiral linkers in Zr-Based UiO-68 metal-organic framework[J]. J. Am. Chem. Soc., 2018,140(47):16229-16236. doi: 10.1021/jacs.8b09606

    56. [56]

      Hu Y C, Zhang X, Khoo R S H, Fiankor C, Zhang X, Zhang J. Stepwise assembly of quinary multivariate metal-organic frameworks via diversified linker exchange and installation[J]. J. Am. Chem. Soc., 2023,145(25):13929-13937. doi: 10.1021/jacs.3c03421

    57. [57]

      Sikma R E, Butler K S, Vogel D J, Harvey J A, Gallis D F S. Quest for multifunctionality: Current progress in the characterization of heterometallic metal-organic frameworks[J]. J. Am. Chem. Soc., 2024,146(9):5715-5734. doi: 10.1021/jacs.3c05425

    58. [58]

      Yuan S, Chen Y P, Qin J S, Lu W G, Wang X, Zhang Q, Bosch M, Liu T F, Lian X Z, Zhou H C. Cooperative cluster metalation and ligand migration in zirconium metal-organic frameworks[J]. Angew.Chem. Int. Ed., 2015,127(49):14909-14913. doi: 10.1002/ange.201505625

    59. [59]

      Ikuno T, Zheng J, Vjunov A, Sanchez-Sanchez M, Ortuño M A, Pahls D R, Fulton J L, Camaioni D M, Li Z Y, Ray D, Mehdi B L, Browning N D, Farha O K, Hupp J T, Cramer C J, Gagliardi L, Lercher J A. Methane oxidation to methanol catalyzed by Cu-Oxo clusters stabilized in NU-1000 metal-organic framework[J]. J. Am. Chem. Soc., 2017,139(30):10294-10301. doi: 10.1021/jacs.7b02936

    60. [60]

      Kung C W, Otake K I, Drout R J, Goswami S, Farha O K, Hupp J T. Post-synthetic cyano-ferrate (Ⅱ) functionalization of a metal-organic framework, NU-1000[J]. Langmuir, 2023,39(14):4936-4942. doi: 10.1021/acs.langmuir.2c03354

    61. [61]

      Yuan S, Qin J S, Su J, Li B, Li J L, Chen W M, Drake H F, Zhang P, Yuan D Q, Zuo J L, Zhou H C. Sequential transformation of zirconium(Ⅳ)-MOFs into heterobimetallic MOFs bearing magnetic anisotropic cobalt (Ⅱ) centers[J]. Angew. Chem. Int. Ed., 2018,57(38):12578-12583. doi: 10.1002/anie.201808568

    62. [62]

      Yuan S, Qin J S, Li J L, Huang L, Feng L, Fang Y, Lollar C T, Pang J D, Zhang L L, Sun D, Alsalme A, Cagin T, Zhou H C. Retrosynthesis of multi-component metal-organic frameworks[J]. Nat. Commun., 2018,9808. doi: 10.1038/s41467-018-03102-5

    63. [63]

      Aljammal N, Lauwaert J, Biesemans B, Vandevyvere T, Sabbe M K, Heynderickx P M, Thybaut J W. UiO-66 metal-organic frameworks as aldol condensation catalyst: Impact of defects, solvent, functionality on the catalytic activity and selectivity[J]. J. Catal., 2024,433115471. doi: 10.1016/j.jcat.2024.115471

    64. [64]

      Bueken B, Velthoven N V, Krajnc A, Smolders S, Taulelle F, Mellot-Draznieks C, Mali G, Bennett T D, Vos D D. Tackling the defect conundrum in UiO-66: A mixed-linker approach to engineering missing linker defects[J]. Chem. Mater., 2017,29(24):10478-10486. doi: 10.1021/acs.chemmater.7b04128

    65. [65]

      Feng L, Yuan S, Zhang L L, Tan K, Li J L, Kirchon A, Liu L M, Zhang P, Han Y, Chabal Y J, Zhou H C. Creating hierarchical pores by controlled linker thermolysis in multivariate metal-organic frameworks[J]. J. Am. Chem. Soc., 2018,140(6):2363-2372. doi: 10.1021/jacs.7b12916

    66. [66]

      Chen C X, Wei Z W, Jiang J J, Fan Y Z, Zheng S P, Cao C C, Li Y H, Fenske D, Su C Y. Precise modulation of the breathing behavior and pore surface in Zr-MOFs by reversible post-synthetic variable-spacer installation to fine-tune the expansion magnitude and sorption properties[J]. Angew. Chem. Int. Ed., 2016,55(34):9932-9936. doi: 10.1002/anie.201604023

    67. [67]

      Chen C X, Wei Z W, Jiang J J, Zheng S P, Wang H P, Qiu Q F, Cao C C, Fenske D, Su C Y. Dynamic spacer installation for multirole metal-organic frameworks: A new direction toward multifunctional MOFs achieving ultrahigh methane storage working capacity[J]. J. Am. Chem. Soc., 2017,139(17):6034-6037. doi: 10.1021/jacs.7b01320

    68. [68]

      Chen C X, Wei Z W, Pham T, Lan P C, Zhang L, Forrest K A, Chen S, Al-Enizi A M, Nafady A, Su C Y, Ma S Q. Nanospace engineering of metal-organic frameworks through dynamic spacer installation of multifunctionalities for efficient separation of ethane from ethane/ethylene mixtures[J]. Angew. Chem. Int. Ed., 2021,60(17):9680-9685. doi: 10.1002/anie.202100114

    69. [69]

      He H H, Guo B B, Liu Y, Zhang L L, Huang W. Post-synthetic modification of zirconium metal-organic frameworks for adsorption and separation of light hydrocarbons[J]. Cryst. Growth Des., 2020,20(8):4882-4885. doi: 10.1021/acs.cgd.0c00690

    70. [70]

      Liu J, Redfern L R, Liao Y J, Islamoglu T, Atilgan A, Farha O K, Hupp J T. Metal-organic-framework-supported and-isolated ceria clusters with mixed oxidation states[J]. ACS Appl. Mater. Interfaces, 2019,11(51):47822-47829. doi: 10.1021/acsami.9b12261

    71. [71]

      Chen C X, Fan Y Z, Cao C C, Wang H P, Fan Y N, Jiang J J, Wei Z W, Maurin G, Su C Y. Dynamic coordination chemistry of fluorinated Zr-MOFs: Synthetic control and reassembly/disassembly beyond de novo synthesis to tune the structure and property[J]. Chem.-Eur. J., 2020,26(37):8254-8261. doi: 10.1002/chem.202001052

    72. [72]

      Furukawa H, Gandara F, Zhang Y B, Jiang J C, Queen W L, Hudson M R, Yaghi O M. Water adsorption in porous metal-organic frameworks and related materials[J]. J. Am. Chem. Soc., 2014,136(11):4369-4381. doi: 10.1021/ja500330a

    73. [73]

      Zhang L L, Guo B B, He H H, Zhang X R, Feng Y, Fan W D, Cao J L, Lu G, Chen Y H, Sun D F, Huang W. Fabrication of (4, 10) and (4, 12)-connected multifunctional zirconium metal-organic frameworks for the targeted adsorption of a guest molecule[J]. Inorg. Chem., 2020,59(1):695-704. doi: 10.1021/acs.inorgchem.9b02950

    74. [74]

      Zhu N X, Wei Z W, Chen C X, Wang D, Cao C C, Qiu Q F, Jiang J J, Wang H P, Su C Y. Self-generation of surface roughness by low-surface-energy alkyl chains for highly stable superhydrophobic/superoleophilic MOFs with multiple functionalities[J]. Angew. Chem. Int. Ed., 2019,58(47):17033-17040. doi: 10.1002/anie.201909912

    75. [75]

      Xue H, Huang X S, Yin Q, Hu X J, Zheng H Q, Huang G, Liu T F. Bimetallic cationic metal-organic frameworks for selective dye adsorption and effective Cr2O72- removal[J]. Cryst. Growth Des., 2020,20(8):4861-4866. doi: 10.1021/acs.cgd.0c00239

    76. [76]

      Zhang L L, Yuan S, Fan W D, Pang J D, Li F G, Guo B B, Zhang P, Sun D F, Zhou H C. Cooperative sieving and functionalization of Zr metal-organic frameworks through insertion and post-modification of auxiliary linkers[J]. ACS Appl. Mater. Interfaces, 2019,11(25):22390-22397. doi: 10.1021/acsami.9b05091

    77. [77]

      Yuan S, Zou L F, Li H X, Chen Y P, Qin J S, Zhang Q, Lu W G, Hall M B, Zhou H C. Flexible zirconium metal-organic frameworks as bioinspired switchable catalysts[J]. Angew. Chem. Int. Ed., 2016,55(36):10776-10780. doi: 10.1002/anie.201604313

    78. [78]

      Wang C, Xie Z G, Kathryn E D, Lin W B. Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis[J]. J. Am. Chem. Soc., 2011,133(34):13445-13454. doi: 10.1021/ja203564w

    79. [79]

      Pang J D, Di Z Y, Qin J S, Yuan S, Lollar C T, Li J L, Zhang P, Wu M Y, Yuan D Q, Hong M C, Zhou H C. Precisely embedding active sites into a mesoporous Zr-framework through linker installation for high-efficiency photocatalysis[J]. J. Am. Chem. Soc., 2020,142(35):15020-15026. doi: 10.1021/jacs.0c05758

    80. [80]

      Wang Y, Feng L, Pang J D, Li J L, Huang N, Day G S, Cheng L, Drake H F, Wang Y, Lollar C T, Qin J S, Gu Z Y, Lu T B, Yuan S, Zhou H C. Photosensitizer-anchored 2D MOF nanosheets as highly stable and accessible catalysts toward artemisinin production[J]. Adv.Sci., 2019,6(11)1802059. doi: 10.1002/advs.201802059

    81. [81]

      Mo Q J, Zhang L, Li S H, Song H L, Fan Y N, Su C Y. Engineering single-atom sites into pore-confined nanospaces of porphyrinic metal-organic frameworks for the highly efficient photocatalytic hydrogen evolution reaction[J]. J. Am. Chem. Soc., 2022,144(49):22747-22758. doi: 10.1021/jacs.2c10801

    82. [82]

      Cai P, Xu M, Meng S S, Lin Z F, Yan T H, Drake H F, Zhang P, Pang J D, Gu Z Y, Zhou H C. Precise spatial-designed metal-organic framework nanosheets for efficient energy transfer and photocatalysis[J]. Angew. Chem. Int. Ed., 2021,60(52):27258-27263. doi: 10.1002/anie.202111594

    83. [83]

      Castner A T, Johnson B A, Cohen S M, Ott S. Mimicking the electron transport chain and active site of [FeFe] hydrogenases in one metal-organic framework: Factors that influence charge transport[J]. J. Am. Chem. Soc., 2021,143(21):7991-7999. doi: 10.1021/jacs.1c01361

    84. [84]

      Chen C X, Qiu Q F, Pan M, Cao C C, Zhu N X, Wang H P, Jiang J J, Wei Z W, Su C Y. Tunability of fluorescent metal-organic frameworks through dynamic spacer installation with multivariate fluorophores[J]. Chem. Commun., 2018,54(97):13666-13669. doi: 10.1039/C8CC07441K

    85. [85]

      Chen C X, Wei Z W, Fan Y N, Su P Y, Ai Y Y, Qiu Q F, Wu K, Yin S Y, Pan M, Su C Y. Visualization of anisotropic and stepwise piezofluorochromism in an MOF single crystal[J]. Chem, 2018,4(11):2658-2669. doi: 10.1016/j.chempr.2018.08.025

    86. [86]

      Chen C X, Yin S Y, Wei Z W, Qiu Q F, Zhu N X, Fan Y N, Pan M, Su C Y. Pressure-induced multiphoton excited fluorochromic metal-organic frameworks for improving MPEF properties[J]. Angew. Chem. Int. Ed., 2019,58(40):14379-14385. doi: 10.1002/anie.201908793

    87. [87]

      Yuan S, Qin J S, Xu H Q, Su J, Rossi D, Chen Y P, Zhang L L, Lollar C T, Wang Q, Jiang H L, Son D H, Xu H Y, Huang Z Z, Zou X D, Zhou H C. [Ti8Zr2O12(COO)16] cluster: An ideal inorganic building unit for photoactive metal-organic frameworks[J]. ACS Central Sci., 2018,4(1):105-111. doi: 10.1021/acscentsci.7b00497

    88. [88]

      Ren D, Xia H L, Zhou K, Wu S J, Liu X Y, Wang X T, Li J. Tuning and directing energy transfer in the whole visible spectrum through linker installation in metal-organic frameworks[J]. Angew. Chem. Int. Ed., 2021,60(47):25048-25054. doi: 10.1002/anie.202110531

    89. [89]

      Han G D, Wu S J, Zhou K, Xia H L, Liu X Y, Li J. Full-color emission in multicomponent metal-organic frameworks via linker installation[J]. Inorg. Chem., 2022,61(8):3363-3367. doi: 10.1021/acs.inorgchem.1c02977

    90. [90]

      Li J L, Yuan S, Qin J S, Pang J D, Zhang P, Zhang Y M, Huang Y Y, Drake H F, Liu W R, Zhou H C. Stepwise assembly of turn-on fluorescence sensors in multicomponent metal-organic frameworks for in vitro cyanide detection[J]. Angew. Chem. Int. Ed., 2020,59(24):9319-9323. doi: 10.1002/anie.202000702

    91. [91]

      Park J, Xu M, Li F Y, Zhou H C. 3D long-range triplet migration in a water-stable metal-organic framework for upconversion-based ultralow-power in vivo imaging[J]. J. Am. Chem. Soc., 2018,140(16):5493-5499. doi: 10.1021/jacs.8b01613

    92. [92]

      Yuan S, Qin J S, Zou L F, Chen Y P, Wang X, Zhang Q, Zhou H C. Thermodynamically guided synthesis of mixed-linker Zr-MOFs with enhanced tunability[J]. J. Am. Chem. Soc., 2016,138(20):6636-6642. doi: 10.1021/jacs.6b03263

    93. [93]

      Xu M, Meng S S, Cai P Y, Gu Y H, Yan T A, Yan T H, Zhang Q H, Gu L, Liu D H, Zhou H C, Gu Z Y. Homogeneously mixing different metal-organic framework structures in single nanocrystals through forming solid solutions[J]. ACS Central Sci., 2022,8(2):184-191. doi: 10.1021/acscentsci.1c01344

    94. [94]

      Hou B S, Qin C, Sun C Y, Wang X L, Su Z M. Stepwise construction of multivariate metal-organic frameworks from a predesigned Zr16 cluster[J]. CCS Chem., 2021,3(12):287-293. doi: 10.31635/ccschem.020.202000630

    95. [95]

      Meng S S, Xu M, Guan H X, Chen C L, Cai P Y, Dong B, Tan W S, Gu Y H, Tang W Q, Xie L G, Yuan S, Han Y, Kong X Q, Gu Z Y. Anisotropic flexibility and rigidification in a TPE-based Zr-MOFs with scu topology[J]. Nat. Commun., 2023,14(1)5347. doi: 10.1038/s41467-023-41055-6

  • 加载中
    1. [1]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    2. [2]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . 二维材料基超级电容器的容量与倍率性能提升策略. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    3. [3]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    4. [4]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    5. [5]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    6. [6]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    7. [7]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    8. [8]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    9. [9]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    10. [10]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    11. [11]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    12. [12]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    13. [13]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    14. [14]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    15. [15]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    16. [16]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    17. [17]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    18. [18]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    19. [19]

      Yaofeng Yuan Keyin Ye Chunfa Xu Hong Yan Yuanming Li . Fostering an International Perspective in Postgraduate Student Teaching: A Case Study of the Organic Structure Analysis Course. University Chemistry, 2024, 39(6): 145-150. doi: 10.3866/PKU.DXHX202402024

    20. [20]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

Metrics
  • PDF Downloads(33)
  • Abstract views(1357)
  • HTML views(517)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return