From synthesis to application: Development and prospects of InP quantum dots
- Corresponding author: Yao YIN, iamyyin@njtech.edu.cn Lin WANG, iamlwang@njtech.edu.cn
Citation:
Yu SU, Xinlian FAN, Yao YIN, Lin WANG. From synthesis to application: Development and prospects of InP quantum dots[J]. Chinese Journal of Inorganic Chemistry,
;2024, 40(11): 2105-2123.
doi:
10.11862/CJIC.20240126
He K Y, Zhu J J, Li Z S, Chen Z, Zhang H H, Liu C, Zhang X, Wang S, Zhao P Y, Zhou Y, Zhang S Z, Yin Y, Zheng X R, Huang W, Wang L. High-sensitive 2D PbI2 photodetector with ultrashort channel[J]. Front. Phys., 2023,18(6)63305. doi: 10.1007/s11467-023-1323-1
Zhang X, Wang C L, Ou Z W, Jiang X H, Chen J L, Ma H F, Zha C Y, Wang W, Zhang L H, Wang T, Wang L. Thickness-dependent excitonic properties of WSe2/FePS3 van der waals heterostructures[J]. Nanoscale, 2023,15(2):828-835. doi: 10.1039/D2NR05455H
Tang J, Ge F X, Chen J L, Zhou D W, Zhan G X, Liu J, Yuan J X, Shi X Y, Zhao P Y, Fan X L, Su Y, Liu C Z, He J H, Tang J Q, Zha C Y, Zhang L H, Song X F, Wang L. A droplet method for synthesis of multiclass ultrathin metal halides[J]. Small, 2023,19(43)2301573. doi: 10.1002/smll.202301573207895
Tong T, Gan Y Q, Li W S, Zhang W, Song H Z, Zhang H H, Liao K, Deng J, Li S, Xing Z Y, Yu Y, Tu Y D, Wang W H, Chen J L, Zhou J, Song X F, Zhang L H, Wang X Y, Qin S C, Shi Y, Huang W, Wang L. Boosting the sensitivity of WSe2 phototransistor via Janus interfaces with 2D perovskite and ferroelectric layers[J]. ACS Nano, 2024,17(1):530-538.
Lv C G, Zhang L H, Zhang X, Zhang H M, Xie H G, Zhang J H, Liu Y F, Liu Y, Wu R X, Zhang J R, Zha C Y, Wang W, Wan Z, Li B, Zhu C, Ma H F, Duan X D, Wang L. Controlled synthesis of submillimeter non-layered WO2 nanoplates via a WSe2-assisted method[J]. Adv. Mater., 2023,35(12)2207895. doi: 10.1002/adma.202207895
Liu C, Pan J, Yuan Q H, Zhu C, Liu J Q, Ge F X, Zhu J J, Xie H T, Zhou D W, Zhang Z C, Zhao P Y, Tian B B, Huang W, Wang L. Highly reliable van der waals memory boosted by a single 2D charge trap medium[J]. Adv. Mater., 2023,36(3)2305580.
Bawendi M G, Steigerwald M L, Brus L E. The quantum mechanics of larger semiconductor clusters ("quantum dots")[J]. Annu. Rev. Phys. Chem., 1990,41(1):477-496. doi: 10.1146/annurev.pc.41.100190.002401
Almeida G, Ubbink R F, Stam M, Fossé I D, Houtepen A J. InP colloidal quantum dots for visible and near-infrared photonics[J]. Nat. Rev. Mater., 2023,8(11):742-758. doi: 10.1038/s41578-023-00596-4
Peng L C, Wang Y J, Ren Y R, Wang Z R, Cao P F, Konstantatos G. InSb/InP core-shell colloidal quantum dots for sensitive and fast shortwave infrared photodetectors[J]. ACS Nano, 2024,18(6):5113-5121. doi: 10.1021/acsnano.3c12007
Chen M, Wang J X, Yin F F, Du Z G, Belfiore L A, Tang J G. Strategically integrating quantum dots into organic and perovskite solar cells[J]. J. Mater. Chem. A, 2021,9(8):4505-4527. doi: 10.1039/D0TA11336K
Lin X Y, Chen Z W, Han Y Y, Nie C M, Xia P, He S, Li J T, Wu K F. ZnSe/ZnS core/shell quantum dots as triplet sensitizers toward visible-to-ultraviolet B photon upconversion[J]. ACS Energy Lett., 2022,7(3):914-919. doi: 10.1021/acsenergylett.2c00017
Zhang W D, Duan X J, Tan Y Z, Hao J J, Zhu H M, Wang Q Q, Yang H C, Liu H C, Wang K, Wang Z W, Wang Y L, Song Y J, Sun X W. Giant pyramidal near-infrared InP/ZnS quantum dots with size over 15 nm for cell imaging[J]. Laser Photon. Rev., 20242400367. doi: 10.1002/lpor.202400367
Wang L J, Liang C X, Zheng N Y, Yang C Y, Yan S, Wang X, Zuo Z H, He C Y. Kidney injury contributes to edema of zebrafish larvae caused by quantum dots[J]. Sci. Total Environ., 2024,908168420. doi: 10.1016/j.scitotenv.2023.168420
Wang Y K, Wan H Y, Xu J, Zhong Y, Jung E D, Park S M, Teale S, Imran M, Yu Y J, Xia P, Won Y H, Kim K H, Lu Z H, Liao L S, Hoogland S, Sargent E H. Bifunctional electron-transporting agent for red colloidal quantum dot light-emitting diodes[J]. J. Am. Chem. Soc., 2023,145(11):6428-6433. doi: 10.1021/jacs.2c13677
Zhu Z H, Zhu C, Yang L, Chen Q, Zhang L H, Dai J, Cao J C, Zeng S Y, Wang Z Y, Wang Z W, Zhang W, Bao J S, Yang L J, Yang Y, Chen B, Yin C Y, Chen H, Cao Y, Gu H, Yan J X, Wang N N, Xing G C, Li H, Wang X Y, Li S Z, Liu Z, Zhang H, Wang L, Huang X, Huang W. Room-temperature epitaxial welding of 3D and 2D perovskites[J]. Nat. Mater., 2022,21(9):1042-1049. doi: 10.1038/s41563-022-01311-4
Zhan G X, Zhang J R, Zhang L H, Qu Z W, Yang H Y, Qian Y C, Zhang X, Xing Z Y, Zhang L, Li C Z, Zhong J X, Yuan J X, Cao Y, Zhou D W, Chen X L, Ma H F, Song X F, Zha C Y, Huang X, Wang J P, Wang T, Huang W, Wang L. Stimulating and manipulating robust circularly polarized photoluminescence in achiral hybrid perovskites[J]. Nano Lett., 2022,22(10):3961-3968. doi: 10.1021/acs.nanolett.2c00482
Cao Y, Li C Z, Deng J, Tong T, Qian Y C, Zhan G X, Zhang X, He K Y, Ma H F, Zhang J R, Zhou J, Wang L. Enhanced photodetector performance of black phosphorus by interfacing with chiral perovskite[J]. Nano Res., 2022,15(8):7492-7497. doi: 10.1007/s12274-022-4378-3
Zhang J R, Song X F, Wang L, Huang W. Ultrathin two-dimensional hybrid perovskites toward flexible electronics and optoelectronics[J]. Natl. Sci. Rev., 2022,9(5)nwab129. doi: 10.1093/nsr/nwab129
Luo Y, Zhang J R, Chen X L, Wang L. Enlighten the non-illuminated region by phase segregation of mixed halide perovskites[J]. Light-Sci. Appl., 2022,11(1)311. doi: 10.1038/s41377-022-01019-9
Zhou D W, Zhao P Y, Zhang J R, Jiang X H, Qin S C, Zhang X, Jiang R, Deng Y F, Jiang H J, Zhan G X, Luo Y, Ma H F, Wang L. Lithographic multicolor patterning on hybrid perovskites for nano-optoelectronic applications[J]. Small, 2022,18(48)2205227. doi: 10.1002/smll.202205227
Yuan J X, Zhang X M, Zhou D W, Ge F X, Zhong J X, Zhao S H, Ou Z W, Zhan G X, Zhang X, Li C Z, Tang J, Bai Q, Zhang J R, Zhu C, Wang T, Ruan L F, Zhu C Q, Song X F, Huang W, Wang L. Excessive iodine enabled ultrathin inorganic perovskite growth at the liquid-air interface[J]. Angew. Chem. Int. Ed., 2023,62(19)e202218546. doi: 10.1002/anie.202218546
Shi X Y, Liu C, Zhang X M, Zhan G X, Cai Y X, Zhou D W, Zhao Y W, Wang N N, Hu F R, Wang X Y, Ma H F, Wang L. Vapor phase growth of air-stable hybrid perovskite FAPbBr3 single-crystalline nanosheets[J]. Nano Lett., 2024,24(7):2299-2307. doi: 10.1021/acs.nanolett.3c04604
Zhong J X, Zhou D W, Bai Q, Liu C, Fan X L, Zhang H H, Li C Z, Jiang R, Zhao P Y, Yuan J X, Li X J, Zhan G X, Yang H Y, Liu J, Song X F, Zhang J R, Huang X, Zhu C, Zhu C Q, Wang L. Growth of millimeter-sized 2D metal iodide crystals induced by ion-specific preference at water-air interfaces[J]. Nat. Commun., 2024,15(1)3185. doi: 10.1038/s41467-024-47241-4
Chuhan L, Ghimire S, Subrahmanyam C, Miyasaka T, Biju V. Synthesis, optoelectronic properties and applications of halide perovskites[J]. Chem. Soc. Rev., 2020,49(10):2869-2885. doi: 10.1039/C9CS00848A
Park A, Goudarzi A, Yaghmaie P, Thomas V J, Maine E. Rapid response through the entrepreneurial capabilities of academic scientists[J]. Nat. Nanotechnol., 2022,17(8):802-807.
Jang E, Kim Y, Won Y H, Jang H, Choi S M. Environmentally friendly InP-based quantum dots for efficient wide color gamut displays[J]. ACS Energy Lett., 2020,5(4):1316-1327. doi: 10.1021/acsenergylett.9b02851
Tamang S, Lincheneau C, Hermans Y, Jeong S, Reiss P. Chemistry of InP nanocrystal syntheses[J]. Chem. Mater., 2016,28(8):2491-2506. doi: 10.1021/acs.chemmater.5b05044
Zhao M X, Li Y, Zeng E Z, Wang C J. The application of CdSe quantum dots with multicolor emission as fluorescent probes for cell labeling[J]. Chem. Asian J., 2014,9(5):1349-1355. doi: 10.1002/asia.201301692
Peng X G, Zhang Z F, Ge J J, Deng Y L, Chen X F, Zhang J R, Deng Z T, Kambe Y, Talapin D V, Wang Y Y. Surface passivation of intensely luminescent all-inorganic nanocrystals and their direct optical patterning[J]. Nat. Commun., 2023,14(1)49. doi: 10.1038/s41467-022-35702-7
Pu C, Peng X G. To battle surface traps on CdSe/CdS core/shell nanocrystals: Shell isolation versus surface treatment[J]. J. Am. Chem. Soc., 2016,138(26):8134-8142. doi: 10.1021/jacs.6b02909
Zhang W J, Li B, Chang C, Chen F, Zhang Q, Lin Q L, Wang L, Yan J H, Wang F F, Chong Y H, Du Z L, Fan F J, Shen H B. Stable and efficient pure blue quantum-dot LEDs enabled by inserting an antioxidation layer[J]. Nat. Commun., 2024,15(1)783. doi: 10.1038/s41467-024-44894-z
Qiu Y L, Gong Z P, Xu L, Huang Q C, Yang Z X, Ye B Q, Ye Y L, Meng Z Y, Zeng Z W, Shen Z H, Wu W B, Zhou Y Q, Hong Z Q, Cheng Z M, Ye S W, Hong H Y, Lan Q T, Li F S, Guo T L, Xu S. Performance enhancement of quantum dot light-emitting diodes via surface modification of the emitting layer[J]. ACS Appl. Nano Mater., 2022,5(2):2962-2972. doi: 10.1021/acsanm.2c00229
Wei S, Luo X, Miao J H, Zhang L. Efficient green quantum dot lightemitting diodes enabled by high-quality alloyed gradient CdSeS/CdS/ZnS core/shell quantum dots[J]. J. Mater. Sci.: Mater. Electron., 2022,33(35):26313-26321. doi: 10.1007/s10854-022-09314-2
Roy D, Routh T, Asaithambi A V, Mandal S, Mandal P K. Spectral and temporal optical behavior of blue-, green-, orange-, and redemitting CdSe-based core/gradient alloy shell/shell quantum dots: ensemble and single-particle investigation results[J]. J. Phys. Chem. C, 2016,120(6):3483-3491. doi: 10.1021/acs.jpcc.5b10051
Bandaru S, Palanivel M, Ravipati M, Wu W Y, Zahid S, Halkarni S S, Dalapati G K, Ghosh K K, Gulyas B, Padmanabhan P, Chakrabortty S. Highly monodisperse, size tunable glucosamine conjugated CdSe quantum dots for enhanced cellular uptake and bioimaging[J]. ACS Omega, 2024,9(7):7452-7462.
Zhu Y L, Li C S, Xu Y, Wang D F. Ultrasonic-assisted synthesis of aqueous CdTe/CdS QDs in salt water bath heating[J]. J. Alloy. Compd., 2014,608(25):141-147.
Ishankulov A F, Khalilov K F, Shamilov R R, Galyametdinov Y G, Mukhamadiev N K. Sizeoptical characteristics of CdSe/ZnS quantum dots modified by thiol stabilizers[J]. J. Sol-Gel Sci. Technol., 2023,108(2):292-297. doi: 10.1007/s10971-023-06096-9
Bhand G R, Chaure N B. Synthesis of CdTe, CdSe and CdTe/CdSe core/shell QDs from wet chemical colloidal method[J]. Mater. Sci. Semicond. Process, 2017,68:279-287. doi: 10.1016/j.mssp.2017.06.033
Washington A L, Strouse G F. Microwave synthetic route for highly emissive TOP/TOPS passivated CdS quantum dots[J]. Chem. Mater., 2009,21(15):3586-3592. doi: 10.1021/cm900624z
He Z Y, Zhou P J. Microwaveassisted aqueous synthesis of highly luminescent carboxymethyl chitosan-coated CdTe/CdS quantum dots as fluorescent probe for live cell imaging[J]. J. Fluoresc., 2012,22:193-199. doi: 10.1007/s10895-011-0946-8
Zhan H J, Zhou P J, Pan K L, He T, He X, Zhou C Y, He Y N. Onepot aqueous-phase synthesis of ultra-small CdSe/CdS/CdZnS coreshell-shell quantum dots with high-luminescent efficiency and good stability[J]. J. Nanopart. Res., 2013,15:1-12.
Xu J, Hu R Q, Wang Q H, Wang P, Bao H F. Extracellular biosynthesis of biocompatible CdSe quantum dots[J]. IET Nanobiotechnol., 2019,13(9):962-966. doi: 10.1049/iet-nbt.2018.5432
Órdenes-Aenishanslins N, Anziani-Ostuni G, Quezada C P, Espinoza-González R, Bravo D, Pérez-Donoso J M. Biological synthesis of CdS/CdSe core/shell nanoparticles and its application in quantum dot sensitized solar cells[J]. Front. Microbiol., 2019,101587. doi: 10.3389/fmicb.2019.01587
Aqoma H, Lee S H, Imran I F, Hwang J H, Lee S H, Jang S Y. Alkyl ammonium iodide-based ligand exchange strategy for high-efficiency organic-cation perovskite quantum dot solar cells[J]. Nat. Energy, 2024,9:324-332. doi: 10.1038/s41560-024-01450-9
Bi C H, Yao Z W, Sun X J, Wei X C, Wang J X, Tian J J. Perovskite quantum dots with ultralow trap density by acid etching-driven ligand exchange for high luminance and stable pure-blue light-emitting diodes[J]. Adv. Mater., 2021,33(15)2006722. doi: 10.1002/adma.202006722
Luo C, Yan C, Li W, Chun F J, Xie M L, Zhu Z H, Gao Y, Guo B L, Yang W Q. Ultrafast thermodynamic control for stable and efficient mixed halide perovskite nanocrystals[J]. Adv. Funct. Mater., 2020,30(19)2000026. doi: 10.1002/adfm.202000026
Zhang J B, Cai B, Zhou X, Yuan F L, Yin C Y, Wang H Y, Chen H T, Ji X Z, Liang X F, Shen C, Wang Y, Ma Z Z, Qing J, Shi Z F, Hu Z J, Hou L T, Zeng H B, Bai S, Gao F. Ligandinduced cation-π interactions enable high-efficiency, bright, and spectrally stable Rec. 2020 pure-red perovskite light-emitting diodes.[J]. Adv. Mater., 2023,35(45)2303938. doi: 10.1002/adma.202303938
DONG Y H, ZENG S Y, HAN B N, XUE J, SONG J Z, ZENG H B. BN/CsPbX3 composite nanocrystals: Synthesis and applications in white LED[J]. J. Inorg. Mater., 2019,34(1):72-78.
Jiang G C, Erdem O, Hübner R, Georgi M, Wei W, Fan X L, Wang J, Demir H V, Gaponik N. Mechanosynthesis of polymer-stabilized lead bromide perovskites: Insight into the formation and phase conversion of nanoparticles[J]. Nano Res., 2021,14(4):1078-1086. doi: 10.1007/s12274-020-3152-7
Meng F Y, Liu X Y, Cai X Y, Gong Z F, Li B B, Xie W T, Li M K, Chen D C, Yip H L, Su S J. Incorporation of rubidium cations into blue perovskite quantum dot lightemitting diodes via FABr-modified multi-cation hot-injection method[J]. Nanoscale, 2019,11(3):1295-1303. doi: 10.1039/C8NR07907B
Zhang D, Yu M M, Xu Y B, Li D Y, Huang Y, Yu C, Tang C C, Lin J. Solvothermal synthesis of perovskite CsPbCl3 nanoplates and improved photoluminescence performance through postsynthetic treatment[J]. Opt. Mater., 2022,127112257. doi: 10.1016/j.optmat.2022.112257
Parveen S, Paul K K, Das R, Giri P K. Large exciton binding energy, high photoluminescence quantum yield and improved photostability of organo-metal halide hybrid perovskite quantum dots grown on a mesoporous titanium dioxide template[J]. J. Colloid Interface Sci., 2019,539:619-633. doi: 10.1016/j.jcis.2018.12.105
Wang B, Zhang C Y, Zheng W L, Zhang Q G, Bao Z Q, Kong L, Li L. Large-scale synthesis of highly luminescent perovskite nanocrystals by templateassisted solidstate reaction at 800 ℃[J]. Chem. Mater., 2019,32(1):308-314.
Zhao G G, Zhang M, Li H X, Guo Y Y, Liu T H, Wang H Q, Wang H Y, Fang Y. Velocity field distribution control in antisolvent flow realizing highly stable and efficient perovskite nanocrystals[J]. J. Colloid Interface Sci., 2023,649:214-222. doi: 10.1016/j.jcis.2023.06.114
Yuan L F, Chen D J, He K, Xu J M, Xu K Y, Hu J, Liang S S, Zhu H M. Advancing microarray fabrication: Onepot synthesis and highresolution patterning of UVcrosslinkable perovskite quantum dots[J]. Nano Res., 2024,17(9):8600-8609. doi: 10.1007/s12274-024-6784-1
Bi C H, Sun X J, Huang X, Wang S X, Yuan J F, Wang J X, Pullerits T, Tian J J. Stable CsPb1-xZnxI3 colloidal quantum dots with ultralow density of trap states for high-performance solar cells[J]. Chem. Mater., 2020,32(14):6105-6113. doi: 10.1021/acs.chemmater.0c01750
Ding N, Zhou D L, Pan G C, Xu W, Chen X, Li D Y, Zhang X H, Zhu J Y, Ji Y N, Song H W. Europiumdoped lead-free Cs3Bi2Br9 perovskite quantum dots and ultrasensitive Cu2+detection[J]. ACS Sustain. Chem. Eng., 2019,7(9):8397-8404. doi: 10.1021/acssuschemeng.9b00038
Luo Z S, Li Q, Zhang L M, Wu X T, Tan L, Zou C, Liu Y J, Quan Z W. 0D Cs3Cu2X5 (X=I, Br, and Cl) nanocrystals: Colloidal syntheses and optical properties[J]. Small, 2020,16(3)1905226. doi: 10.1002/smll.201905226
Cheng P F, Sun L, Feng L, Yang S Q, Yang Y, Zheng D Y, Zhao Y, Sang Y B, Zhang R L, Wei D H, Deng W Q, Han K L. Colloidal synthesis and optical properties of all-inorganic low-dimensional cesium copper halide nanocrystals[J]. Angew. Chem., 2019,131(45):16233-16237. doi: 10.1002/ange.201909129
Huang Q Q, He M X, Yang Y Q, Lai N, Zhang Q Y, Quan Y J, Liao J Y, Yang Y, Wang C, Yang J, Sun T, Wang R F. Moisture-stable CsSnBr3 quantum dots and SnO2 glass-ceramics for broadband whiteemitting diodes[J]. ACS Appl. Nano Mater., 2024,7(15):17967-17977. doi: 10.1021/acsanm.4c03202
Ma Z Z, Shi Z F, Wang L T, Zhang F, Wu D, Yang D W, Chen X, Zhang Y, Shan C X, Li X J. Water-induced fluorescence enhancement of lead-free cesium bismuth halide quantum dots by 130% for stable white light-emitting devices[J]. Nanoscale, 2020,12(6):3637-3645. doi: 10.1039/C9NR10075J
Tran M N, Cleveland I J, Pustorino G A, Aydil E S. Efficient nearinfrared emission from lead-free ytterbium-doped cesium bismuth halide perovskites[J]. J. Mater. Chem. A, 2021,9(22):13026-13035. doi: 10.1039/D1TA02147H
Yang Z W, Lin G L, Bai J Y, Li L C, Zhu Y B, He L R, Jiang Z, Wu W J, Yu X J, Li F S, Li W W. Inkjet-printed blue InP/ZnS/ZnS quantum dot light-emitting diodes[J]. Chem. Eng. J., 2022,450138413. doi: 10.1016/j.cej.2022.138413
Zhang Y B, Qiao L L, Zhang Z Q, Liu Y F, Li L S, Shen H B, Zhao M X. A mitochondrial-targetable fluorescent probe based on high-quality InP quantum dots for the imaging of living cells[J]. Mater. Des., 2022,219110736. doi: 10.1016/j.matdes.2022.110736
Zhao H B, Hu H L, Zheng J P, Qie Y, Yu K B, Zhu Y B, Luo Z Q, Lin L H, Yang K Y, Guo T L, Li F S. One-pot synthesis of InP multishell quantum dots for narrow-bandwidth light-emitting devices[J]. ACS Appl. Nano Mater., 2023,6(5):3797-3802. doi: 10.1021/acsanm.2c05498
Long R, Chen X P, Zhang X H, Chen F, Wu Z H, Shen H B, Du Z L. Carboxylic-free synthesis of InP quantum dots for highly efficient and bright electroluminescent device[J]. Adv. Opt. Mater., 2023,11(6)2202594. doi: 10.1002/adom.202202594
Koh S J, Eom T, Kim W D, Lee K, Lee D, Lee Y K, Kim H, Bae W K, Lee D C. Zincphosphorus complex working as an atomic valve for colloidal growth of monodisperse indium phosphide quantum dots[J]. Chem. Mater., 2017,29(15):6346-6355. doi: 10.1021/acs.chemmater.7b01648
Chen Y R, Wang R X, Kuang Y M, Bian Y Y, Chen F, Shen H B, Chi Z, Guo L J. Suppressed auger recombination and enhanced emission of InP/ZnSe/ZnS quantum dots through inner shell manipulation[J]. Nanoscale, 2023,15(46):18920-18927. doi: 10.1039/D3NR05010F
Lovingood D D, Strouse G F. Microwave induced in-situ active ion etching of growing InP nanocrystals[J]. Nano Lett., 2008,8(10):3394-3397. doi: 10.1021/nl802075j
Vikram A, Kumar V, Ramesh U, Balakrishnan K, Oh N, Deshpande K, Ewers T, Trefonas P, Shim M, Kenis P J A. A millifluidic reactor system for multistep continuous synthesis of InP/ZnSeS nanoparticles[J]. Chem. Nano Mat., 2018,4(9):943-953.
Baek J, Shen Y, Lignos I, Bawendi M G, Jensen K F. Multistage microfluidic platform for the continuous synthesis of Ⅲ-Ⅴ core/shell quantum dots[J]. Angew. Chem. Int. Ed., 2018,57(34):10915-10918. doi: 10.1002/anie.201805264
Okamoto A, Toda S, Hirakawa M, Bai H, Tanaka M, Seino S, Nakagawa T, Murakami H. Narrowing of the particle size distribution of InP quantum dots for green light emission by synthesis in micro-flow reactor[J]. ChemistrySelect, 2022,7(6)e202104215. doi: 10.1002/slct.202104215
Huang F, Bi C H, Guo R Q, Zheng C, Ning J J, Tian J J. Synthesis of colloidal blue-emitting InP/ZnS core/shell quantum dots with the assistance of copper cations[J]. J. Phys. Chem. Lett., 2019,10(21):6720-6726. doi: 10.1021/acs.jpclett.9b02386
Kim K H, Jo J H, Jo D Y, Han C Y, Yoon S Y, Kim Y, Kim Y H, Ko Y H, Kim S W, Lee C, Yang H. Cation-exchange-derived InGaP alloy quantum dots toward blue emissivity[J]. Chem. Mater., 2020,32(8):3537-3544. doi: 10.1021/acs.chemmater.0c00551
Du R Z, Li X Y, Li Y, Li Y X, Hou T L, Li Y M, Qiao C, Zhang J T. Cation exchange synthesis of aliovalent doped InP QDs and their ZnSexS1-x shell coating for enhanced fluorescence properties[J]. J. Phys. Chem. Lett., 2023,14(3):670-676. doi: 10.1021/acs.jpclett.2c03515
Mićić O I, Cheong H M, Fu H, Zunger A, Sprague J R, Mascarenhas A, Nozik A J. Size-dependent spectroscopy of InP quantum dots[J]. J. Phys. Chem. B, 1997,101(25):4904-4912. doi: 10.1021/jp9704731
Battaglia D, Peng X G. Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent[J]. Nano Lett., 2002,2(9):1027-1030. doi: 10.1021/nl025687v
Wells R L, Aubuchon S R, Kher S S, Lube M S, White P S. Synthesis of nanocrystalline indium arsenide and indium phosphide from indium(Ⅲ) halides and tris(trimethylsilyl) pnicogens. synthesis, characterization, and decomposition behavior of I3InP(SiMe3)3.[J]. Chem. Mater., 1995,7(4):793-800. doi: 10.1021/cm00052a027
Cros-Gagneux A, Delpech F, Nayral C, Cornejo A, Coppel Y, Bruno C. Surface chemistry of InP quantum dots: A comprehensive study[J]. J. Am. Chem. Soc., 2010,132(51):18147-18157. doi: 10.1021/ja104673y
Won Y H, Cho O, Kim T, Chung D Y, Kim T, Chung H, Jang H, Lee J, Kim D, Jang E. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes[J]. Nature, 2019,575(7784):634-638. doi: 10.1038/s41586-019-1771-5
Li Y, Hou X Q, Dai X L, Yao Z L, Lv L L, Jin Y Z, Peng X G. Stoichiometry-controlled InP-based quantum dots: Synthesis, photoluminescence, and electroluminescence[J]. J. Am. Chem. Soc., 2019,141(16):6448-6452. doi: 10.1021/jacs.8b12908
Peng Y, Sheng C, Shan Y L, Bi Y H, Hu Y Q, Zeng R S, Zou B S, Wang Y J, Zhao J L. Highly efficient green InP-based quantum dot light-emitting diodes regulated by inner alloyed shell component[J]. Light. Sci. Appl., 2022,11(1)162. doi: 10.1038/s41377-022-00855-z
Chen B, Li D Y, Wang F. InP quantum dots: Synthesis and lighting applications[J]. Small, 2020,16(32)2002454. doi: 10.1002/smll.202002454
Kim T, Kim S W, Kang M, Kim S W. Large-scale synthesis of InPZnS alloy quantum dots with dodecanethiol as a composition controller[J]. J. Phys. Chem. Lett., 2012,3(2):214-218. doi: 10.1021/jz201605d
Wu Q Q, Cao F, Wang S, Wang Y M, Sun Z J, Feng J W, Liu Y, Wang L, Cao Q, Li Y G, Wei B, Wong W Y, Yang X Y. Quasi-shellgrowth strategy achieves stable and efficient green InP quantum dot light-emitting diodes[J]. Adv. Sci., 2022,9(21)2200959. doi: 10.1002/advs.202200959
Granada-Ramirez D A, Arias-Cerón J S, Pérez-González M, LunaArias J P, Cruz-Orea A, Rodríguez-Fragoso P, Herrera-Pérez J L, Gómez-Herrera M L, Tomás S A, Vázquez-Hernández F, Durán-Ledezma A A, Mendoza-Alvarez J G. Chemical synthesis and optical, structural, and surface characterization of InP-In2O3 quantum dots[J]. Appl. Surf. Sci., 2020,530147294. doi: 10.1016/j.apsusc.2020.147294
Pidluzhna A, Stakhira P, Baryshnikov G, Zavaraki A J, Ågren H. InP/ZnS quantum dots synthesis and photovoltaic application[J]. Appl. Nanosci., 2023,13(7):4969-4975. doi: 10.1007/s13204-022-02658-5
Ramasamy P, Ko K J, Kang J W, Lee J S. Two-step"seed-mediated" synthetic approach to colloidal indium phosphide quantum dots with high-purity photo-and electroluminescence[J]. Chem. Mater., 2018,30(11):3643-3647. doi: 10.1021/acs.chemmater.8b02049044
Hu R R, He F K, Hou R X, Wu Z H, Zhang X T, Shen H B. The narrow synthetic window for highly homogenous InP quantum dots toward narrow red emission[J]. Inorg. Chem., 2024,63(7):3516-3524. doi: 10.1021/acs.inorgchem.3c04358
Stone D, Li X, Naor T, Dai J K, Remennik S, Banin U. Size and emission control of wurtzite InP nanocrystals synthesized from Cu3-xP by cation exchange[J]. Chem. Mater., 2023,35(24):10594-10605. doi: 10.1021/acs.chemmater.3c02226
Beberwyck B J, Alivisatos A P. Ion exchange synthesis of Ⅲ-Ⅴ nanocrystals[J]. J. Am. Chem. Soc., 2012,134(49):19977-19980. doi: 10.1021/ja309416c
Shan X Y, Li B H, Ji B T. Synthesis of wurtzite In and Ga phosphide quantum dots through cation exchange reactions[J]. Chem. Mater., 2021,33(13):5223-5232. doi: 10.1021/acs.chemmater.1c01287
Gerbec J A, Magana D, Washington A, Strouse G F. Microwave-enhanced reaction rates for nanoparticle synthesis[J]. J. Am. Chem. Soc., 2005,127(45):15791-15800. doi: 10.1021/ja052463g
Siramdas R, McLaurin E J. InP nanocrystals with color-tunable luminescence by microwave-assisted ionic-liquid etching[J]. Chem. Mater., 2017,29(5):2101-2109. doi: 10.1021/acs.chemmater.6b04457
Edel J B, Fortt R, deMello J C, deMello A J. Microfluidic routes to the controlled production of nanoparticles[J]. Chem. Commun., 2002(10):1136-1137. doi: 10.1039/b202998g
Kim K, Jeong S, Woo J Y, Han C S. Successive and large-scale synthesis of InP/ZnS quantum dots in a hybrid reactor and their application to white LEDs[J]. Nanotechnology, 2012,23(6)065602. doi: 10.1088/0957-4484/23/6/065602
Thomas A, Nair P V, Thomas K G. InP quantum dots: An environmentally friendly material with resonance energy transfer requisites[J]. J. Phys. Chem. C, 2014,118(7):3838-3845. doi: 10.1021/jp500125v
Tran A, Valleix R, Matic M, Sleiman M, Cisnetti F, Boyer D. Environmentally friendly InP quantum dots as a visible-light catalyst for water treatment[J]. Environ. Sci.: Nano, 2023,10(7):1749-1753. doi: 10.1039/D3EN00158J
Ziegler J, Xu S, Kucur E, Meister F, Batentschuk M, Gindele F, Nann T. Silica-coated InP/ZnS nanocrystals as converter material in white LEDs[J]. Adv. Mater., 2008,20(21):4068-4073. doi: 10.1002/adma.200800724
Yin L Q, Zhang D D, Yan Y X, Cao F, Lin G L, Yang X Y, Li W W, Zhang J H. Applying InP/ZnS green-emitting quantum dots and InP/ZnSe/ZnS red-emitting quantum dots to prepare WLED with enhanced photoluminescence performances[J]. J. Phys. Chem. C, 2020,8:154683-154690.
Karadza B, Avermaet H V, Mingabudinova L, Hens Z, Meuret Y. Efficient, high-CRI white LEDs by combining traditional phosphors with cadmium-free InP/ZnSe red quantum dots[J]. Photonics Res., 2022,10(1):155-165. doi: 10.1364/PRJ.428843
Li Q H, Bai J K, Huang M L, Li L, Liao X Q, Wang L F, Xu B, Jin X. High-performance, environmentally friendly solid-phase color converted-based quantum dots white light-emitting diodes[J]. J. Lumin., 2023,255119560. doi: 10.1016/j.jlumin.2022.119560
Zhang Z L, Liu D, Li D Z, Huang K K, Zhang Y, Shi Z, Xie R G, Han M Y, Wang Y, Yang W S. Dual emissive Cu: InP/ZnS/InP/ZnS nanocrystals: Single-source"greener"emitters with flexibly tunable emission from visible to near-infrared and their application in white light-emitting diodes[J]. Chem. Mater., 2015,27(4):1405-1411. doi: 10.1021/cm5047269
Lim J, Bae W K, Lee D, Nam M K, Jung J, Lee C, Char K, Lee S. InP@ZnSeS, core@composition gradient shell quantum dots with enhanced stability[J]. Chem. Mater., 2011,23(20):4459-4463. doi: 10.1021/cm201550w
Lim J, Park M, Bae W K, Lee D, Lee S, Lee C, Char K. Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots[J]. ACS Nano, 2013,7(10):9019-9026. doi: 10.1021/nn403594j41377-022-00855-zle2019090145
Jo J H, Kim J H, Lee K H, Han C Y, Jang E P, Do Y R, Yang H. High-efficiency red electroluminescent device based on multishelled InP quantum dots[J]. Opt. Lett., 2016,41(17):3984-3987. doi: 10.1364/OL.41.003984
Kim H Y, Park Y J, Kim J W, Han C J, Lee J, Kim Y, Greco T, Ippen C, Wedel A, Ju B K, Oh M S. Transparent InP quantum dot light-emitting diodes with ZrO2 electron transport layer and indium zinc oxide top electrode[J]. Adv. Funct. Mater., 2016,26(20):3454-3461. doi: 10.1002/adfm.201505549
Kim H J, Shin M H, Lee J Y, Kim J H, Kim Y J. Realization of 95% of the Rec. 2020 color gamut in a highly efficient LCD using a pat‐ terned quantum dot film[J]. Opt. Express., 2017,25(10):10724-10734. doi: 10.1364/OE.25.010724
Ahn S W, Ko M, Yoon S, Oh J H, Yang Y, Kim S H, Song J K, Do Y R. InP/ZnSeS/ZnS quantum dotembedded alumina microbeads for color-by-blue displays[J]. ACS Appl. Nano Mater., 2022,5(11):16070-16081. doi: 10.1021/acsanm.2c02638
Weng Y L, Chen S Y, Zhang Y G, Sun L, Wu Y, Yan Q, Guo T L, Zhou X T, Wu C X. Fabrication and color conversion of patterned InP/ZnS quantum dots photoresist film via a laser-assisted route[J]. Opt. Laser Technol., 2021,140107026. doi: 10.1016/j.optlastec.2021.107026
Lee J Y, Kim E A, Han J, Choi Y H, Hahm D, Kang C J, Bae W K, Lim J, Cho S Y. Nondestructive direct photolithography for patterning quantum dot films by atomic layer deposition of ZnO[J]. Adv. Mater. Interfaces, 2022,9(22)2200835. doi: 10.1002/admi.202200835
Tian W Y, Wu T X, Wu Y S, Xiao J Q, Wang P K, Li J H. Application of InP quantum dot film by photolithography technology on a micro-LED display[J]. ECS J. Solid State Sci. Technol., 2023,12(4)046003. doi: 10.1149/2162-8777/acc5b0
Lee J Y, Kim E A, Choi Y, Han J, Hahm D, Shin D, Bae W K, Lim J, Cho S Y. High-resolution multicolor patterning of InP quantum dot films by atomic layer deposition of ZnO[J]. ACS Photonics, 2023,10(8):2598-2607. doi: 10.1021/acsphotonics.3c00332
Castelletto S, Boretti A. Luminescence solar concentrators: A technology update[J]. Nano Energy, 2023,109108269. doi: 10.1016/j.nanoen.2023.108269
Sadeghi S, Jalali H B, Melikov R, Kumar B G, Aria M M, Ow-Yang C W, Nizamoglu S. Stokes-shift-engineered indium phosphide quantum dots for efficient luminescent solar concentrators[J]. ACS Appl. Mater. Interfaces, 2018,10(15):12975-12982. doi: 10.1021/acsami.7b19144
Jalali H B, Sadeghi S, Baylam I, Han M, Ow-Yang C W, Sennaroglu A, Nizamoglu S. Exciton recycling via InP quantum dot funnels for luminescent solar concentrators[J]. Nano Res., 2021,14(5):1488-1494. doi: 10.1007/s12274-020-3207-9
Eren G O, Sadeghi S, Shahzad M, Nizamoglu S. Protocol on synthesis and characterization of copper-doped InP/ZnSe quantum dots as ecofriendly luminescent solar concentrators with high performance and large area[J]. STAR Protoc., 2021,2(3)100664. doi: 10.1016/j.xpro.2021.100664
Kum H, Dai Y S, Aihara T, Slocum MA, Tayagaki T, Fedorenko A, Polly S J, Bittner Z, Sugaya T, Hubbard S M. Two-step photon absorption in InP/InGaP quantum dot solar cells[J]. Appl. Phys. Lett., 2018,113(4)043902. doi: 10.1063/1.5037238
Wu J P, Li M H, Jiang Y, Xu Q L, Xian L D, Guo H D, Wan J, Wen R, Fang Y Y, Xie D M, Lei Y, Hu J S, Lin Y. Carrier management via Integrating InP quantum dots into electron transport layer for efficient perovskite solar cells[J]. ACS Nano, 2022,16(9):15063-15071. doi: 10.1021/acsnano.2c06171
Kuang Y J, Sun K, Sukrittanon S, Takabayashi K, Kamiya I, Lewis N S, Tu C W. Enhancement of the performance of GaP solar cells by embedded In(N)P quantum dots[J]. Nano Energy, 2015,15:782-788. doi: 10.1016/j.nanoen.2015.06.003
Yang S L, Zhao P X, Zhao X C, Qu L T, Lai X C. InP and Sn: InP based quantum dot sensitized solar cells[J]. J. Mater. Chem. A, 2015,3(43):21922-21929. doi: 10.1039/C5TA04925C
Yu S, Xie Z H, Ran M X, Wu F, Zhong Y Q, Dan M, Zhou Y. Zinc ions modified InP quantum dots for enhanced photocatalytic hydrogen evolution from hydrogen sulfide[J]. J. Colloid Interface Sci., 2020,573:71-77. doi: 10.1016/j.jcis.2020.03.110
Bang J W, Das S, Yu E J, Kim K, Lim H, Kim S, Hong J W. Controlled photoinduced electron transfer from InP/ZnS quantum dots through Cu doping: A new prototype for the visible-light photocatalytic hydrogen evolution reaction[J]. Nano Lett., 2020,20(9):6263-6271. doi: 10.1021/acs.nanolett.0c00983
Zhao H Y, Li X, Cai M K, Liu C, You Y M, Wang R, Channa A I, Lin F, Huo D, Xu G F, Tong X, Wang Z M. Role of copper doping in heavy metal-free InP/ZnSe core/shell quantum dots for highlyefficient and stable photoelectrochemical cell[J]. Adv. Energy Mater., 2021,11(31)2101230. doi: 10.1002/aenm.202101230
Zeng S J, Tan W J, Si J H, Mao L H, Shi J W, Li Y R, Hou X. Ultrafast electron transfer in InP/ZnSe/ZnS quantum dots for photocatalytic hydrogen evolution[J]. J. Phys. Chem. Lett., 2022,13(39):9096-9102. doi: 10.1021/acs.jpclett.2c02147
Chon B, Choi S, Seo Y, Lee H S, Kim C H, Son H J, Kang S O. InP-quantum dot surface-modified TiO2 catalysts for sustainable photochemical carbon dioxide reduction[J]. ACS Sustain. Chem. Eng., 2022,10(18):6033-6044. doi: 10.1021/acssuschemeng.2c00938
Chakraborty I N, Roy S, Devatha G, Rao A, Pillai P P. InP/ZnS quantum dots as efficient visible-light photocatalysts for redox and carbon-carbon coupling reactions[J]. Chem. Mater., 2019,31(7):2258-2262. doi: 10.1021/acs.chemmater.9b00086
Zhang J, Wang J, Yan T, Peng Y N, Xu D J, Deng D W. InP/ZnSe/ZnS quantum dots with strong dual emissions: Visible excitonic emission and near-infrared surface defect emission and their application in in vitro and in vivo bioimaging[J]. J. Mater. Chem. B, 2017,5(41):8152-8160. doi: 10.1039/C7TB02324C
Lim M, Lee W, Bang G, Lee W J, Park Y, Kwon Y, Jung Y, Kim S, Bang J. Synthesis of far-redand near-infrared-emitting Cu-doped InP/ZnS (core/shell) quantum dots with controlled doping steps and their surface functionalization for bioconjugation[J]. Nanoscale, 2019,11(21):10463-10471. doi: 10.1039/C9NR02192B
Zhang Y B, Lv Y B, Li L S, Zhao X J, Zhao M X, Shen H B. Aminophosphate precursors for the synthesis of near-unity emitting InP quantum dots and their application in liver cancer diagnosis[J]. Exploration, 2022,2(4)20220082. doi: 10.1002/EXP.20220082
Ham K M, Kim M, Bock S, Kim J, Kim W, Jung H S, An J, Song H, Kim J W, Kim H M, Rho W Y, Lee S H, Park S M, Kim D E, Jun B H. Highly bright silica-coated InP/ZnS quantum dot-embedded silica nanoparticles as biocompatible nanoprobes[J]. Int. J. Mol. Sci., 2022,23(18)10977. doi: 10.3390/ijms231810977
Jalali H B, Aria M M, Dikbas U M, Sadeghi S, Kumar B G, Sahin M, Kavakli I H, Ow-Yang C W, Nizamoglu S. Effective neural photostimulation using indium-based type-Ⅱ quantum dots[J]. ACS Nano, 2018,12(8):8104-8114. doi: 10.1021/acsnano.8b02976
Karatum O, Aria M M, Eren G O, Yildiz E, Melikov R, Srivastava S B, Surme S, Dogru I B, Jalali H B, Ulgut B, Sahin A, Kavakli I H, Nizamoglu S. Nanoengineering InP quantum dot-based photoactive biointerfaces for optical control of neurons[J]. Front. Neurosci., 2021,15652608. doi: 10.3389/fnins.2021.652608
Gao Z X, Ju X, Zhang H Z, LiuX H, Chen H Y, Li W F, Zhang H L, Liang L Y, Cao H T. InP quantum dots tailored oxide thin film phototransistor for bioinspired visual adaptation[J]. Adv. Funct. Mater., 2023,33(52)2305959. doi: 10.1002/adfm.202305959
Miaomiao He , Zhiqing Ge , Qiang Zhou , Jiaqing He , Hong Gong , Lingling Li , Pingping Zhu , Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
Jinlong YAN , Weina WU , Yuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
Jianjun Liu , Xue Yang , Chi Zhang , Xueyu Zhao , Zhiwei Zhang , Yongmei Chen , Qinghong Xu , Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031
Li'na ZHONG , Jingling CHEN , Qinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280
Meirong HAN , Xiaoyang WEI , Sisi FENG , Yuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150
Yuan ZHU , Xiaoda ZHANG , Shasha WANG , Peng WEI , Tao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232
Shuwen SUN , Gaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
Siyi ZHONG , Xiaowen LIN , Jiaxin LIU , Ruyi WANG , Tao LIANG , Zhengfeng DENG , Ao ZHONG , Cuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
Qi Wang , Yicong Gao , Feng Lu , Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141
Xiao SANG , Qi LIU , Jianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158
Han ZHANG , Jianfeng SUN , Jinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098
Lin Song , Dourong Wang , Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107
Feng Lu , Tao Wang , Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005
Xueli Mu , Lingli Han , Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057
Ling Liu , Haibin Wang , Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080
Inset in b: the fluorescent image of QDs with traditional strategy (left) and QS strategy (right) under UV light irradiation; V/D is vally/depth, TS is the traditional strategy, QS is the quasi shell growth strategy.
CE: cation exchange method.
Inset in d: photographs of four‐pixel and text‐patterned QLEDs.
Inset in a: photograph of InP QD‐LSC under UV irradiation; Inset in c: schematic of the setup to change the portion of the illuminated area of LSC under ultraviolet radiation; Inset in d: transparency of fabricated QD‐LSC shown under an ambient light with loading concentration of 26 mg·mL-1 and total internal reflection is visible on edges and seems brighter in photograph of QD‐LSC under 365 nm UV radiation (scale bar: 1 cm).
In d: Ket is the electron transfer rate constant; In e: ED is an electron donor, EDox is an oxidized electron donor, VB is the valence band, and CB is the conduction band.