Citation: Junmei FAN, Wei LIU, Ruitao ZHU, Chenxi QIN, Xiaoling LEI, Haotian WANG, Jiao WANG, Hongfei HAN. High sensitivity detection of baicalein by N, S co-doped carbon dots and their application in biofluids[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(10): 2009-2020. doi: 10.11862/CJIC.20240120 shu

High sensitivity detection of baicalein by N, S co-doped carbon dots and their application in biofluids

  • Corresponding author: Junmei FAN, jmfan@tynu.edu.cn
  • Received Date: 8 April 2024
    Revised Date: 17 July 2024

Figures(8)

  • In this work, p-phenylenediamine and L-cysteine were used as raw materials, and water-soluble N, S co-doped carbon dots (N, S-CDs) with excellent performance were prepared through a one-step solvothermal method. The morphology and structure of N, S-CDs were characterized by transmission electron microscope, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy, and the basic photophysical properties were investigated via UV-Vis absorption spectra and fluorescence spectra. Meanwhile, the N, S-CDs have excellent luminescence stability with pH, ionic strength, radiation time, and storage time. Experimental results illustrated the present sensor platform exhibited high sensitivity and selectivity in response to baicalein with a detection limit of 85 nmol·L-1. The quenching mechanism is proved to be the inner filter effect. In addition, this sensor can also detect baicalein in biofluids (serum and urine) with good accuracy and reproducibility.
  • 加载中
    1. [1]

      Yong H M, Bi F Y, Liu J, Qin Y, Bai R Y, Liu J. Preparation and char-acterization of antioxidant packaging by chitosan, D-α-tocopheryl polyethylene glycol 1000 succinate and baicalein[J]. Int. J. Biol. Macromol., 2020,153:836-845. doi: 10.1016/j.ijbiomac.2020.03.076

    2. [2]

      Tuli H S, Aggarwal V, Kaur J, Aggarwal D, Parashar G, Parashar N C, Tuorkey M, Kaur G, Savla R, Sak K, Kumar M. Baicalein: A metabo-lite with promising antineoplastic activity[J]. Life Sci., 2020,259118183. doi: 10.1016/j.lfs.2020.118183

    3. [3]

      Wang L, Feng T, Su Z L, Pi C, Wei Y M, Zhao L. Latest research prog-ress on anticancer effect of baicalin and its aglycone baicalein[J]. Arch. Pharm. Res., 2022,45:535-557. doi: 10.1007/s12272-022-01397-z

    4. [4]

      Low Z X, OuYong B M, Hassandarvish P, Poh C L, Ramanathan B. Antiviral activity of silymarin and baicalein against dengue virus[J]. Sci. Rep., 2021,1121221. doi: 10.1038/s41598-021-98949-y

    5. [5]

      Wang X, Li X B, Chen W F, Wang R L, Bian W, Choi M M. F[J]. Phos-phorus doped graphitic carbon nitride nanosheets as fluorescence probe for the detection of baicalein. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2018,198:1-6.

    6. [6]

      Lin M C, Tsai M J, Wen K C. Supercritical fluid extraction of flavo-noids from Scutellariae Radix[J]. J. Chromatogr. A, 1999,830:387-395. doi: 10.1016/S0021-9673(98)00906-6

    7. [7]

      Gharari Z, Bagheri K, Danafar H, Sharafi A. Simultaneous determina-tion of baicalein, chrysin and wogonin in four Iranian Scutellaria spe-cies by high performance liquid chromatography[J]. J. Appl. Res. Med. Plants, 2020,16100232.

    8. [8]

      Zhang D D, Zhang Y M, He L C. Sensitive voltammetric determina-tion of baicalein at thermally reduced graphene oxide modified glassy carbon electrode[J]. Electroanalysis, 2013,25:2136-2144. doi: 10.1002/elan.201300189

    9. [9]

      Xie Z K, Lu W, Yang L X, Li G P, Ye B X. A voltammetry sensor plat-form for baicalein and baicalin simultaneous detection in vivo based on Ta2O5-Nb2O5@CTS composite[J]. Talanta, 2017,170:358-368. doi: 10.1016/j.talanta.2017.04.022

    10. [10]

      Chen G, Zhang H W, Ye J N. Determination of baicalein, baicalin and quercetin in Scutellariae Radix and its preparations by capillary electrophoresis with electrochemical detection[J]. Talanta, 2000,53:471-479. doi: 10.1016/S0039-9140(00)00514-2

    11. [11]

      Peng Y Y, Ding X H, Chu Q C, Ye J N. Determination of baicalein, baicalin, and chlorogenic acid in Yinhuang oral liquid by capillary electrophoresis with electrochemical detection[J]. Anal. Lett., 2003,36:2793-2803. doi: 10.1081/AL-120025256

    12. [12]

      Baygildieva D I, Baygildiev T M, Stavrianidi A N, Shpigun O A, Rodin I A. Simultaneous determination of wogonin, scutellarin, baicalin, and baicalein in extracts from scutellariae baicalensis by high-performance liquid chromatography with tandem mass spec-trometry[J]. J. Anal. Chem., 2018,73:1317-1322. doi: 10.1134/S1061934818140022

    13. [13]

      Zhang Y, Wang X J, Wang L, Yu M, Han X J. Interactions of the baicalin and baicalein with bilayer lipid membranes investigated by cyclic voltammetry and UV-Vis spectroscopy[J]. Bioelectrochemistry, 2014,95:29-33. doi: 10.1016/j.bioelechem.2013.10.008

    14. [14]

      Ru Y, Waterhouse G I N, Lu S Y. Aggregation in carbon dots[J]. Aggregate, 2022,3e296. doi: 10.1002/agt2.296

    15. [15]

      Zhu L C, Kong W J, Ma J J, Zhang R F, Qin C, Liu H, Pan S. Appli-cations of carbon dots and its modified carbon dots in bone defect repair[J]. J. Biol. Eng., 2022,1632. doi: 10.1186/s13036-022-00311-x

    16. [16]

      Gong X J, Zhang Q Y, Gao Y F, Shuang S M, Choi M M F, Dong C. Phosphorus and nitrogen dual-doped hollow carbon dot as a nanocar-rier for doxorubicin delivery and biological imaging[J]. ACS Appl. Mater. Interfaces, 2016,8:11288-11297. doi: 10.1021/acsami.6b01577

    17. [17]

      Hutton G A M, Martindale B C M, Reisner E. Carbon dots as photo-sensitisers for solar-driven catalysis[J]. Chem. Soc. Rev., 2017,46:6111-6123. doi: 10.1039/C7CS00235A

    18. [18]

      Ding Y N, Li X, Zheng Z Y, Chen M J, Zhang Y, Liu Z Y, Wang F H, Guan L. Preparation and luminescent modulation of yellow car-bon dots for electroluminescent device[J]. J. Lumin., 2022,249119036. doi: 10.1016/j.jlumin.2022.119036

    19. [19]

      Ni Y Q, Wan H H, Liang W Q, Zhang S F, Xu X S, Li L, Shao Y H, Ruan S C, Zhang W F. Random lasing carbon dot fibers for multilev-el anti-counterfeiting[J]. Nanoscale, 2021,13:16872-16878. doi: 10.1039/D1NR04707H

    20. [20]

      Zhang S B, Yan H D, Li H N, Xu T T, Li H, Wang C K, Yang Z, Jia X D, Liu X R. Carbon dots as specific fluorescent sensors for Hg2+ and glutathione imaging[J]. Microchim. Acta, 2023,190224. doi: 10.1007/s00604-023-05805-z

    21. [21]

      Zhang J, Nan D Y, Pan S, Liu H, Yang H, Hu X L. N, S co-doped carbon dots as a dual-functional fluorescent sensor for sensitive detection of baicalein and temperature[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2019,221117161. doi: 10.1016/j.saa.2019.117161

    22. [22]

      Fan J M, Qi L, Li Y P, Tang Q P, Ding L P, Fang Y. A single probe-based sensor array for fingerprinting biothiols in serum and urine via surfactant modulation strategy[J]. Sens. Actuator B-Chem., 2019,301127144. doi: 10.1016/j.snb.2019.127144

    23. [23]

      Fan J M, Wu E R, Dong J L, Zhu R T, Li M Q, Gao J N, Han H F, Ding L P. A minimalist ratiometric fluorescent sensor based on non-covalent ternary platform for sensing H2S in aqueous solution and serum[J]. Colloids Surf. A-Physicochem. Eng. Asp., 2021,616126299. doi: 10.1016/j.colsurfa.2021.126299

    24. [24]

      Zhu P D, Zhao X L, Zhu Q Y, Han X L, Tang Y Y, Liao S, Guo Z X, Wang Z Y, Bi W Z, Xu Q, Zhang L N, Xu M. Exploring multi-element co-doped carbon dots as dual-mode probes for fluorescence/CT imaging[J]. Chem. Eng. J., 2023,470144042. doi: 10.1016/j.cej.2023.144042

    25. [25]

      Zhu P D, Li W J, Zhang Y Q, Sun Q, Lin Y, Qiu A L, Chen X Y, Zhou Y J, Wu G F, Li Y F, Yu Z Q, Xu Q, Luo D X, Cai L L. β-Cyclodextrin derived full-spectrum fluorescent carbon dots: The for-mation process investigation and biological applications[J]. Chin. Chem. Lett., 2023,34108239. doi: 10.1016/j.cclet.2023.108239

    26. [26]

      Dang D K, Chandrasekaran S, Ngo Y L T, Chung J S, Kim E J, Hur S H. One pot solid-state synthesis of highly fluorescent N and S co-doped carbon dots and its use as fluorescent probe for Ag- detection in aqueous solution[J]. Sens. Actuator B-Chem., 2018,255:3284-3291. doi: 10.1016/j.snb.2017.09.155

    27. [27]

      ZHANG Q M, ZHANG L P, ZHENG K W, YANG G Q, HE S J, DU X J, CHEN F H, LI B. Green synthesis of high-stability black rice carbon dots for application in cell imaging[J]. Chinese J. Inorg. Chem., 2023,39(4):735-745.

    28. [28]

      Mohandoss S, Palanisamy S, Priya V V, Mohan S K, Shim J J, Yelithao K, You S, Lee Y R. Excitation-dependent multiple lumines-cence emission of nitrogen and sulfur co-doped carbon dots for cyste-ine sensing, bioimaging, and photoluminescent ink applications[J]. Microchem. J., 2021,167106280. doi: 10.1016/j.microc.2021.106280

    29. [29]

      Li X M, Zhang S L, Kulinich S A, Liu Y L, Zeng H B. Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection[J]. Sci. Rep., 2014,4:4976-4983. doi: 10.1038/srep04976

    30. [30]

      Dong Y Q, Pang H C, Yang H B, Guo C X, Shao J W, Chi Y W, Li C M, Yu T. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission[J]. Angew. Chem. Int. Ed., 2013,52:7800-7804. doi: 10.1002/anie.201301114

    31. [31]

      Liao X F, Chen C J, Zhou R X, Huang Q L, Liang Q L, Huang Z Q, Zhang Y J, Hu H Y, Liang Y L. Comparison of N-doped carbon dots synthesized from the main components of plants including cellulose, lignin, and xylose: Characterized, fluorescence mechanism, and potential applications[J]. Dyes Pigment., 2020,183108725. doi: 10.1016/j.dyepig.2020.108725

    32. [32]

      Li H J, Han S C, Lyu B, Hong T, Zhi S B, Xu L, Xue F F, Sai L M, Yang J H, Wang X Y, He B. Tunable light emission from carbon dots by controlling surface defects[J]. Chin. Chem. Lett., 2021,32:2887-2892. doi: 10.1016/j.cclet.2021.03.051

    33. [33]

      Wang X, Zhu C J, Yan X R, Cheng S J, Zhang Y. The synthesis of N-doped carbon dots for visual differentiating and detection of tetracy-clines[J]. Luminescence, 2023,38:188-195. doi: 10.1002/bio.4439

    34. [34]

      Bao Q Z, Lin D, Gao Y R, Wu L N, Fu J H, Galaa K, Lin X H, Lin L Q. Ultrasensitive off-on-off fluorescent nanosensor for protamine and trypsin detection based on inner-filter effect between N, S-CDs and gold nanoparticles[J]. Microchem. J., 2021,168106409. doi: 10.1016/j.microc.2021.106409

    35. [35]

      Fan J M, Zhu R T, Han W, Han H F, Ding L P. A multi-wavelength cross - reactive fluorescent sensor ensemble for fingerprinting flavo- noids in serum and urine[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2024,310123893. doi: 10.1016/j.saa.2024.123893

    36. [36]

      Chen C X, Zhao D, Hu T, Sun J. , Yang X R[J]. Highly fluorescent nitro- gen and sulfur co- doped graphene quantum dots for an inner filter effect-based cyanide sensor. Sens. Actuator B-Chem., 2017,241:779-788.

  • 加载中
    1. [1]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    2. [2]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    3. [3]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    4. [4]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    5. [5]

      Yijian ZhaoJvzhe LiYunyi ShiJie HuMeiyi LiuYao ShenXinglin HouQiuyue WangQi WangZhiyi Yao . A label-free and ratiometric fluorescent sensor based on porphyrin-metal-organic frameworks for sensitive detection of ochratoxin A in cereal. Chinese Chemical Letters, 2025, 36(4): 110132-. doi: 10.1016/j.cclet.2024.110132

    6. [6]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    7. [7]

      Jiao ChenZihan ZhangGuojin SunYudi ChengAihua WuZefan WangWenwen JiangFulin ChenXiuying XieJianli Li . Benzo[4,5]imidazo[1,2-a]pyrimidine-based structure-inherent targeting fluorescent sensor for imaging lysosomal viscosity and diagnosis of lysosomal storage disorders. Chinese Chemical Letters, 2024, 35(11): 110050-. doi: 10.1016/j.cclet.2024.110050

    8. [8]

      Tao LiuXuwei HanXueyi SunWeijie ZhangKe GaoRunan MinYuting TianCaixia Yin . An activated fluorescent probe to monitor NO fluctuation in Parkinson’s disease. Chinese Chemical Letters, 2025, 36(3): 110170-. doi: 10.1016/j.cclet.2024.110170

    9. [9]

      Xuehua SUNMin MAJianting LIURui TIANHongmei CHAIHuali CUILoujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294

    10. [10]

      Binyang QinMengqi WangShimei WuYining LiChilin LiuYufei ZhangHaosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921

    11. [11]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    12. [12]

      Zhijie ZhangXun LiHuiling TangJunhao WuChunxia YaoKui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700

    13. [13]

      Zhiwei ZhongYanbin HuangWantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339

    14. [14]

      Donghui WuQilin ZhaoJian SunXiurong Yang . Corrigendum to 'Fluorescence immunoassay based on alkaline phosphatase-induced in situ generation of fluorescent non-conjugated polymer dots' [Chin. Chem. Lett. 34 (2023) 107672]. Chinese Chemical Letters, 2024, 35(12): 109881-. doi: 10.1016/j.cclet.2024.109881

    15. [15]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

    16. [16]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    17. [17]

      Wei-Tao DouQing-Wen ZengYan KangHaidong JiaYulian NiuJinglong WangLin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995

    18. [18]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    19. [19]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    20. [20]

      Wenxuan YangLong ShangXiaomeng LiuSihan ZhangHaixia LiZhenhua YanJun Chen . Ultrafast synthesis of nanocrystalline spinel oxides by Joule-heating method. Chinese Chemical Letters, 2024, 35(11): 109501-. doi: 10.1016/j.cclet.2024.109501

Metrics
  • PDF Downloads(1)
  • Abstract views(390)
  • HTML views(66)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return