Citation: Qiuyang LUO, Xiaoning TANG, Shu XIA, Junnan LIU, Xingfu YANG, Jie LEI. Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110 shu

Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes

  • Corresponding author: Xiaoning TANG, xntang@gzu.edu.cn
  • Received Date: 3 April 2024
    Revised Date: 30 May 2024

Figures(6)

  • Herein, a dense and hydrophobic Cu metal protective layer was constructed in-situ on the Zn electrode (Cu@Zn) through a displacement reaction in an organic solvent. Specifically, CuI powder was dissolved in N-methyl-2-pyrrolidone (NMP) and stirred for 12 h to obtain a uniform solution. Subsequently, the bare Zn was immersed in the solution at 80 ℃ for 6 h, and then washed with absolute ethanol three times to achieve the Cu@Zn electrode. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses confirm a dense Cu protective layer on the surface of the Cu@Zn electrode. Additionally, the better hydrophobicity of the Cu@Zn electrode was demonstrated through contact angle measurements with a 2 mol·L-1 ZnSO4 electrolyte. The dense and hydrophobic Cu metal protective layer can effectively isolate the direct contact between the Zn electrode and electrolyte, suppressing side reactions such as hydrogen evolution and corrosion at the electrode/electrolyte interface. Furthermore, the Cu layer possesses zincophilicity, reduced interfacial resistance, and a lower nucleation energy barrier, thereby promoting uniform Zn deposition and effectively inhibiting dendritic growth. As a result, Cu@Zn symmetric cells exhibited continuous stable performance for 1 700 and 1 330 h at 1 mA·cm-2, 1 mAh·cm-2 and 3 mA·cm-2, 1 mAh·cm-2, respectively, which were higher than those of bare Zn symmetric cells (204 and 120 h). Furthermore, the Cu@Zn||MnO2 full cell delivered a specific capacity of 168.5 mAh·g-1 at 1 A·g-1 respectively, maintaining stability for over 2 000 cycles.
  • 加载中
    1. [1]

      Li C, Jin S, Archer L A, Nazar L F. Toward practical aqueous zinc-ion batteries for electrochemical energy storage[J]. Joule, 2022,6(8):1733-1738. doi: 10.1016/j.joule.2022.06.002

    2. [2]

      Han D L, Cui C J, Zhang K Y, Wang Z X, Gao J C, Guo Y, Zhang Z C, Wu S C, Yin L C, Weng Z, Kang F Y, Yang Q H. A non-flammable hydrous organic electrolyte for sustainable zinc batteries[J]. Nat. Sustain., 2021,5(3)205. doi: 10.1038/s41893-021-00800-9

    3. [3]

      Li Q, Chen A, Wang D H, Pe Z X, Zhi C Y. "Soft shorts" hidden in zinc metal anode research[J]. Joule, 2022,6(2):273-279. doi: 10.1016/j.joule.2021.12.009

    4. [4]

      Han D L, Wang Z X, Lu H T, Li H, Cui C J, Zhang Z C, Sun R, Geng C N, Liang Q H, Guo X X, Mo Y B, Zhi X, Kang F Y, Weng Z, Yang Q H. A self-regulated interface toward highly reversible aqueous zinc batteries[J]. Adv. Energy Mater., 2022,12(9)2102982. doi: 10.1002/aenm.202102982

    5. [5]

      JI H M, XIE C L, ZHANG Q, LI Y X, LI H H, WANG H Y. Anode current collector for aqueous zinc-ion batteries: Issues and design strategies[J]. Acta Chim. Sin., 2023,81(1):29-41.  

    6. [6]

      HAN D, MA T, SUN T J, ZHANG W J, TAO Z L. Zinc anode protection strategy for aqueous zinc-ion batteries[J]. Chinese J. Inorg. Chem., 2022,38(2):185-197. doi: 10.11862/CJIC.2022.031

    7. [7]

      Liu M Y, Yuan W T, Ma G Q, Qiu K Y, Nie X Y, Liu Y C, Shen S G, Zhang N. In-situ integration of a hydrophobic and fast-Zn2+-conductive inorganic interphase to stabilize Zn metal anodes[J]. Angew. Chem. Int. Ed., 2023,62(27)e202304444. doi: 10.1002/anie.202304444

    8. [8]

      Yan H B, Li S M, Nan Y, Yang S B, Li B. Ultrafast zinc-ion-conductor interface toward high-rate and stable zinc metal batteries[J]. Adv. Energy Mater., 2021,11(8)2100186.

    9. [9]

      Xia S, Luo Q Y, Liu J N, Yang X F, Lei J, Shao J J, Tang X N. In situ spontaneous construction of zinc phosphate coating layer toward highly reversible zinc metal anodes[J]. Small, 2024e2310497. doi: 10.1002/smll.202310497

    10. [10]

      LI S H, LI M L, CHI X W, YIN X, LUO Z D, YU J H. High-stable aqueous zinc metal anodes enabled by an oriented ZnQ zeolite protective layer with facile ion migration kinetics[J]. Acta Phys.-Chim. Sin., 2024,402309003.

    11. [11]

      Li J J, Liu Z X, Han S H, Zhou P, Lu B A, Zhou J D, Zeng Z Y, Chen Z Z, Zhou J. Hetero nucleus growth stabilizing zinc anode for high-biosecurity zinc-ion batteries[J]. Nano-Micro Lett., 2023,15(1)237. doi: 10.1007/s40820-023-01206-2

    12. [12]

      Chang N N, Li T Y, Li R, Wang S N, Yin Y B, Zhang H B, Li X F. An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices[J]. Energy Environ. Sci., 2020,13(10):3527-3535. doi: 10.1039/D0EE01538E

    13. [13]

      Liu Y, An Y K, Wu L, Sun J G, Xiong F Y, Tang H, Chen S L, Guo Y, Zhang L, An Q Y, Mai L Q. Interfacial chemistry modulation via amphoteric glycine for a highly reversible zinc anode[J]. ACS Nano, 2022,17(1):552-560.

    14. [14]

      Li X, Chen Z J, Ruan P C, Hu X T, Lu B G, Yuan X M, Tian S Y, Zhou J. Inducing preferential growth of the Zn (002) plane by using a multifunctional chelator for achieving highly reversible Zn anodes[J]. Nanoscale, 2024,16(6):2923-2930. doi: 10.1039/D3NR05699F

    15. [15]

      Li Y, Peng X Y, Li X, Duan H, Xie S Y, Dong L B, Kang F Y. Functional ultrathin separators proactively stabilizing zinc anodes for zincbased energy storage[J]. Adv. Mater., 2023,35(18)2300019. doi: 10.1002/adma.202300019

    16. [16]

      Zheng Z Y, Guo S J, Yan M Y, Luo Y Z, Cao F F. A functional janus Ag nanowires/bacterial cellulose separator for high-performance dendrite-free zinc anode under harsh conditions[J]. Adv. Mater., 2023,35(47)2304667. doi: 10.1002/adma.202304667

    17. [17]

      Tian H J, Feng G X, Wang Q, Li Z, Zhang W, Lucero M, Feng Z X, Wang Z, Zhang Y, Zhen C, Gu M, Shan X N, Yang Y. Three-dimensional Zn-based alloys for dendrite-free aqueous Zn battery in dualcation electrolytes[J]. Nat. Commun., 2022,13(1)7922. doi: 10.1038/s41467-022-35618-2

    18. [18]

      SONG R, ZHAO M Q, WANG S, LU Y, BAO X B, LUO Q M, GOU L, FAN X Y, LI D L. Three-dimensional porous structure and zincophile gradient enabling dendrite free zinc anode[J]. Acta Chim. Sinica, 2024,82(4):426-434.  

    19. [19]

      Hieu L T, So S, Kim I T, Hur J. Zn anode with flexible β-PVDF coating for aqueous Zn-ion batteries with long cycle life[J]. Chem. Eng. J., 2021,411128584. doi: 10.1016/j.cej.2021.128584

    20. [20]

      Chen P, Yuan X H, Xia Y B, Zhang Y, Fu L J, Liu L L, Yu N F, Huang Q H, Wang B, Hu X W, Wu Y P, van Ree T. An artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries[J]. Adv. Sci., 2021,8(11)2100309. doi: 10.1002/advs.202100309

    21. [21]

      Hao J N, Li X L, Zhang S L, Yang F F, Zeng X H, Zhang S, Bo G Y, Wang C S, Guo Z P. Designing dendrite-free zinc anodes for advanced aqueous zinc batteries[J]. Adv. Funct. Mater., 2020,30(30)2001263. doi: 10.1002/adfm.202001263

    22. [22]

      Duan J W, Dong J M, Cao R R, Yang H, Fang K K, Liu Y, Shen Z T, Li F M, Liu R, Li H L, Chen C. Regulated Zn plating and stripping by a multifunctional polymer-alloy interphase layer for stable Zn metal anode[J]. Adv. Sci., 2023,10(29)2303343. doi: 10.1002/advs.202303343

    23. [23]

      Chen J Y, Qiao X, Han X R, Zhang J H, Wu H B, He Q, Chen Z B, Shi L, Wang Y Z, Xie Y N, Ma Y W, Zhao J. Releasing plating-induced stress for highly reversible aqueous Zn metal anodes[J]. Nano Energy, 2022,103107814. doi: 10.1016/j.nanoen.2022.107814

    24. [24]

      Kang L T, Cui M W, Jiang F Y, Gao Y F, Luo H J, Liu J J, Liang W, Zhi C Y. Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries[J]. Adv. Funct. Mater., 2018,8(25)1801090.  

    25. [25]

      Li B, Xue J, Lv X, Zhang R C, Ma K X, Wu X W, Dai L, Wang L, He Z X. A facile coating strategy for high stability aqueous zinc ion batteries: Porous rutile nano-TiO2 coating on zinc anode[J]. Surf. Coat. Tech., 2021,421127367. doi: 10.1016/j.surfcoat.2021.127367

    26. [26]

      Yang Y, Liu C Y, Lv Z H, Yang H, Zhang Y F, Ye M H, Chen L B, Zhao J B, Li C C. Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes[J]. Adv. Mater., 2021,33(11)2007388. doi: 10.1002/adma.202007388

    27. [27]

      Chen A S, Zhao C Y, Gao J Z, Guo Z K, Lu X Y, Zhang J C, Liu Z P, Wang M, Liu N N, Fan L S, Zhang Y, Zhang N Q. Multifunctional SEI-like structure coating stabilizing Zn anodes at a large current and capacity[J]. Energy Environ. Sci., 2023,16(1):275-284. doi: 10.1039/D2EE02931F

    28. [28]

      Liu C C, Lu Q Q, Omar A, Mikhailova D. A facile chemical method enabling uniform Zn deposition for improved aqueous Zn-ion batteries[J]. Nanomaterials, 2021,11(3)764. doi: 10.3390/nano11030764

    29. [29]

      Cai Z, Ou Y T, Wang J D, Xiao R, Fu L, Yuan Z, Zhan R M, Sun Y M. Chemically resistant Cu-Zn/Zn composite anode for long cycling aqueous batteries[J]. Energy Storage Mater., 2020,27:205-211. doi: 10.1016/j.ensm.2020.01.032

    30. [30]

      Wang Y Y, Chen Y J, Liu W, Ni X Y, Qing P, Zhao Q W, Wei W F, Ji X B, Ma J M, Chen L B. Uniform and dendrite-free zinc deposition enabled by in situ formed AgZn3 for the zinc metal anode[J]. J. Mater. Chem. A, 2021,9(13):8452-8461. doi: 10.1039/D0TA12177K

    31. [31]

      Han D L, Wu S C, Zhang S W, Deng Y Q, Cui C J, Zhang L A, Long Y, Li H, Tao Y, Weng Z, Yang Q H, Kang F Y. A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems[J]. Small, 2020,16(29)2001736. doi: 10.1002/smll.202001736

    32. [32]

      Ren Q Q, Tang X Y, Zhao X C, Wang Y, Li C H, Wang S, Yuan Y F. A zincophilic interface coating for the suppression of dendrite growth in zinc anodes[J]. Nano Energy, 2023,109108306. doi: 10.1016/j.nanoen.2023.108306

    33. [33]

      Wang M M, Wang W P, Meng Y H, Xu Y, Sun J F, Yuan Y, Chuai M, Chen N, Zheng X H, Luo R, Xu K, Chen W. Crystal facet correlated Zn growth on Cu for aqueous Zn metal batteries[J]. Energy Storage Mater., 2023,56424. doi: 10.1016/j.ensm.2023.01.026

    34. [34]

      Zhu Y P, Cui Y, Alshareef H N. An anode-free Zn-MnO2 battery[J]. Nano Lett., 2021,21(3):1446-1453. doi: 10.1021/acs.nanolett.0c04519

    35. [35]

      Zhang Q, Luan J Y. Fu L, Wu S G, Tang Y G, Ji X B, Wang H Y[J]. Chem. Int. Ed., 2019,58(44):15841-15847. doi: 10.1002/anie.201907830

    36. [36]

      Zhang Y, Yang S C, Deng J, Chen N X, Xie S D, Zhou J J, Wang Z H. Rational design of zincophilic Ag/permselective PEDOT: PSS heterogeneous interfaces for high-rate zinc electrodeposition[J]. Small, 2023,19(49)2303665. doi: 10.1002/smll.202303665

    37. [37]

      Li C P, Shi X D, Liang S Q, Ma X M, Han M M, Wu X W, Zhou J. Spatially homogeneous copper foam as surface dendrite-free host for zinc metal anode[J]. Chem. Eng. J., 2020,379122248. doi: 10.1016/j.cej.2019.122248

    38. [38]

      Xie S Y, Li Y, Li X, Zhou Y J, Dang Z Q, Rong J H, Dong L B. Stable zinc anodes enabled by zincophilic Cu nanowire networks[J]. Nano-Micro. Lett., 2021,14(1)39.

    39. [39]

      Li G P, Wang X L, Lv S H, Wang J, Yu W S, Dong X T, Liu D T. In situ constructing a film-coated 3D porous Zn anode by iodine etching strategy toward horizontally arranged dendrite-free Zn deposition[J]. Adv. Funct. Mater., 2022,33(4)2208288.

    40. [40]

      Miao Z Y, Du M, Li H Z, Zhang F, Jiang H C, Sang Y H, Li Q F, Liu H, Wang S H. Constructing nano-channeled tin layer on metal zinc for high-performance zinc-ion batteries anode[J]. EcoMat, 2021,3(4).

    41. [41]

      Han L S, Guo Y M, Ning F H, Liu X Y, Yi J, Luo Q, Qu B H, Yue J L, Lu Y F, Li Q. Lotus effect inspired hydrophobic strategy for stable Zn metal anodes[J]. Adv. Mater., 2023,46(11)2308086.

    42. [42]

      QIN D D, DING J Y, LIANG C, LIU Q, FENG L G, LUO Y, HU G Z, LUO J, LIU X J. Addressing challenges and enhancing performance of manganese-based cathode materials in aqueous zinc-ion batteries[J]. Acta Phys.-Chim. Sin., 2024,402310034. doi: 10.3866/PKU.WHXB202310034

    43. [43]

      CHEN X H, RUAN P F, WU X W, LIANG S Q, ZHOU J. Crystal structures, reaction mechanisms, and optimization strategies of MnO 2 cathode for aqueous rechargeable zinc batteries[J]. Acta Phys.-Chim. Sin., 2022,38(11)2111003.  

  • 加载中
    1. [1]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    2. [2]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    3. [3]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    4. [4]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    5. [5]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    6. [6]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    7. [7]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    8. [8]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    9. [9]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    10. [10]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    11. [11]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    12. [12]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    13. [13]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    14. [14]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    15. [15]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    16. [16]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    17. [17]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    18. [18]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    19. [19]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    20. [20]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

Metrics
  • PDF Downloads(8)
  • Abstract views(1140)
  • HTML views(187)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return