Citation: Han ZHANG, Jianfeng SUN, Jinsheng LIANG. Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098 shu

Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor

Figures(6)

  • A broadband near-infrared Na3CrF6 phosphor was synthesized by hydrothermal method, and its structure, microstructure, and photoluminescence properties were investigated. The results show that under excitation of 435 nm, the Na3CrF6 phosphor can emit broadband near-infrared light of 650-850 nm, with a peak at 738 nm and a half maximum width of 95 nm. The crystal field intensity of Cr3+ in Na3CrF6 phosphor was calculated to be 1.72 by analyzing spectral data, indicating that Cr3+ is located in the weak crystal field environment. The luminescent intensity of Na3CrF6 phosphor decreased slowly with the increase of heating temperature in the temperature range of 298-473 K.
  • 加载中
    1. [1]

      SHENG X X, XIAO F, LÜ J B. Luminescence characteristics and device applications of Cr3+-doped Ca4HfGe3O12 broadband near-infra-red phosphors[J]. Chinese J. Inorg. Chem., 2024,40(2):345-352. doi: 10.11862/CJIC.20230260

    2. [2]

      WANG K N, LIU L Y, MAO D, HOU M X, TAN C P, MAO Z W, LIU B. A nuclear-targeted AIE photosensitizer for enzyme inhibition and photosensitization in cancer cell ablation[J]. Angew. Chem.-Int. Edit., 2022,61(15)e202114600. doi: 10.1002/anie.202114600

    3. [3]

      WANG K N, LIU L Y, QI G B, CHAO X J, MA W, YU Z Q, PAN Q L, MAO Z W, LIU B. Light-driven cascade mitochondria-to-nucleus photosensitization in cancer cell ablation[J]. Adv. Sci., 2021,8(8)2004379. doi: 10.1002/advs.202004379

    4. [4]

      LEE H, CHO S, LIM J, LEE A, KIM G, SONG D J, CHUN S W, KIM M J, MO C Y. Performance comparison of tungsten-halogen light and phosphor converted NIR LED in soluble solid content estimation of apple[J]. Sensors, 2023,23(4)1961. doi: 10.3390/s23041961

    5. [5]

      CHEN S Y, HAN M X, LI J, LI Y G, GAO Z X, ZHANG Y, MENG M M, ZHANG Q H, DENG D G, CHEN L. Cr3+-activated NaInSi2O6: An efficient broadband near-infrared phosphor with its applications in LED[J]. Ceram. Int., 2023,49(22):36360-36367. doi: 10.1016/j.ceramint.2023.08.320

    6. [6]

      SONG E H, MING H, ZHOU Y Y, HE F Q, WU J C, XIA Z G, ZHANG Q Y. Cr3+-doped Sc-based fluoride enabling highly efficient near infrared luminescence: A case study of K2NaScF6: Cr3+[J]. Laser Photonics Rev., 2021,15(2)2000410. doi: 10.1002/lpor.202000410

    7. [7]

      GU J Y, FAN W G, ZHANG Z Q, YAO Q, ZHAN H Q. Structure and optical property of Pr2O3 powder prepared by reduction[J]. J. Inorg. Mater., 2023,38(7):771-777.

    8. [8]

      WANG Z W, JI H P, WANG F X, HOU X H, YI S S, ZHOU Y, CHEN D L. Valence state control of manganese in MgAl2O4: Mn4+ phosphor by varying the Al2O3 crystal form[J]. J. Inorg. Mater., 2021,36(5):513-520.

    9. [9]

      JIN M H, ZHANG T, LI J G, ZHU Q. Incorporation of Eu3+ in ZnGa2O4: Ni2+ for improved NIR persistent luminescence located in second transparency window[J]. J. Am. Ceram. Soc., 2024,107(1):265-275. doi: 10.1111/jace.19442

    10. [10]

      YU H J, CHEN J, MI R Y, YANG J Y, LIU Y G. Broadband near-infrared emission of K3ScF6: Cr3+ phosphors for night vision imaging system sources[J]. Chem. Eng. J., 2021,417129271. doi: 10.1016/j.cej.2021.129271

    11. [11]

      YU D C, ZHOU Y S, MA C S, MELMAN J H, BAROUDI K M, LACAPRA M, RIMAN R E. Non-rare-earth Na3AlF6: Cr3+ phosphors for far-red light-emitting diodes[J]. ACS. Appl. Electron. Mater., 2019,1(11):2325-2333. doi: 10.1021/acsaelm.9b00527

    12. [12]

      MALYSA B, MEIJERINK A, WU W W, JVSTEL T. On the influence of calcium substitution to the optical properties of Cr3+ doped SrSc2O4[J]. J. Lumines., 2017,190:234-241. doi: 10.1016/j.jlumin.2017.05.030

    13. [13]

      LEE C, BAO Z, FANG M H, LESNIEWSKI T, MAHLIK S, GRINBERG M, LENIEC G, KACZMAREK S M, BRIK M G, TSAI Y T, TSAI T L, LIU R S. Chromium (Ⅲ)-doped fluoride phosphors with broadband infrared emission for light-emitting diodes[J]. Inorg. Chem., 2020,59(1):376-385. doi: 10.1021/acs.inorgchem.9b02630

    14. [14]

      YAO L Q, SHAO Q Y, HAN S Y, LIANG C, HE J H, JIANG , J Q. Enhancing near-infrared photoluminescence intensity and spectral properties in Yb3+ codoped LiScP2O7: Cr3+[J]. Chem. Mater., 2020,32(6):2430-2439. doi: 10.1021/acs.chemmater.9b04934

    15. [15]

      XU X X, SHAO Q Y, YAO L Q, DONG Y, JIANG J Q. Highly efficient and thermally stable Cr3+-activated silicate phosphors for broadband near-infrared LED applications[J]. Chem. Eng. J., 2020,383123108. doi: 10.1016/j.cej.2019.123108

    16. [16]

      ZHOU Z, LI P, XU H B, ZHANG Y. A chemical precipitation method to synthesize Na3CrF6 crystal with unique shapes[J]. J. Inorg. Organomet. Polym. Mater., 2013,23(6):1529-1533. doi: 10.1007/s10904-013-9931-9

    17. [17]

      LIU L, ZHANG J X, WANG X L, HOU W L, LIU X W, XU M, YANG J K, LIANG B. Preparation and fluorescence properties of a Cr3+: Gamma-AlON powder by high temperature solid state reaction[J]. Mater. Lett., 2020,258126811. doi: 10.1016/j.matlet.2019.126811

    18. [18]

      NIE W D, LI Y, ZUO J X, KONG Y K, ZOU W F, CHEN G, PENG J Q, DU F, HAN L, YE X Y. Cr3+-activated Na3X2Li3F12(X=Al, Ga, or In) garnet phosphors with broadband NIR emission and high lumi-nescence efficiency for potential biomedical application[J]. J. Mater. Chem. C, 2021,9(42):15230-15241. doi: 10.1039/D1TC03763C

    19. [19]

      ZHANG R, SUN J F. An efficient perovskite-type Rb2CaPO4F: Eu2+ phosphor with high brightness towards closing the cyan gap[J]. J. Alloy. Compd., 2021,872159698. doi: 10.1016/j.jallcom.2021.159698

    20. [20]

      ZHAO F Y, SONG Z, ZHAO J, LIU Q L. Double perovskite Cs2AgInCl6: Cr3+: Broadband and near-infrared luminescent materials[J]. Inorg. Chem. Front., 2019,6(12):3621-3628. doi: 10.1039/C9QI00905A

    21. [21]

      BU Q Z, WANG Y J, LI D S, YAN Y J, CHANG Y, XIANG G T, ZHOU X J. Highly efficient and thermally stable Cr3+-activated garnet phosphors for application in broadband NIR pc-LEDs[J]. J. Lumines., 2024,45(4):591-602. doi: 10.37188/CJL.20240016

    22. [22]

      YUAN W H, PANG R, ZHANG S, ZHANG H J. Near-infrared phosphor BaY2Al2Ga2SiO12: Cr3+ with excellent thermal stability and considerable quantum efficiency[J]. Chinese Journal of Luminescence, 2024,45(2):290-298.

    23. [23]

      SUN Z S, NING Q X, ZHOU W Y, LUO J B, CHEN P C, ZHOU L Y, PANG Q, ZHANG X G. Structural and spectroscopic investigation of an efficient and broadband NIR phosphor InBO3: Cr3+ and its application in NIR pc-LEDs[J]. Ceram. Int., 2021,47(10):13598-13603. doi: 10.1016/j.ceramint.2021.01.218

    24. [24]

      XIE X, GE W Y, ZHANG Q, YANG M H, WU C G, HE P, YIN H L. Effect of Yb3+/Nd3+ doped on luminescent properties of Sr9Ga (PO4)7:Cr3+[J]. Chinese Journal of Luminescence, 2024,45(5):736-744.

    25. [25]

      SHAO Q Y, DING H, YAO L Q, XU J F, LIANG C, JIANG J Q. Photoluminescence properties of a ScBO3: Cr3+ phosphor and its applications for broadband near-infrared LEDs[J]. RSC Adv., 2018,8(22):12035-12042. doi: 10.1039/C8RA01084F

    26. [26]

      HE F Q, WU J C, SHAO P S, SONG E H. Preparation and luminescent properties research of broadband near-infrared fluoride phosphor Cs2NaAlF6: Cr3+[J]. Laser Optoelectron. Prog., 2021,58(15):114-121.

    27. [27]

      MALYSA B, MEIJERINK A, JVSTEL T. Temperature dependent Cr3+ photoluminescence in garnets of the type X3Sc2Ga3O12(X=Lu, Y, Gd, La)[J]. J. Lumines., 2018,202:523-531. doi: 10.1016/j.jlumin.2018.05.076

    28. [28]

      ZHANG H S, ZHONG J Y, LI C J, WANG L G, ZHAO W R. Broad-band near-infrared luminescence in the NaAlP2O7: Cr3+ phosphor for spectroscopy applications[J]. J. Lumines., 2022,251119211. doi: 10.1016/j.jlumin.2022.119211

  • 加载中
    1. [1]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    2. [2]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    3. [3]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    4. [4]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    5. [5]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    6. [6]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    7. [7]

      Juan CHENGuoyu YANG . A porous-layered aluminoborate built by mixed oxoboron clusters and AlO4 tetrahedra. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 193-200. doi: 10.11862/CJIC.20240341

    8. [8]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    9. [9]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    10. [10]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    11. [11]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    12. [12]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    13. [13]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    14. [14]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    15. [15]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    16. [16]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    17. [17]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    18. [18]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    19. [19]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    20. [20]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

Metrics
  • PDF Downloads(2)
  • Abstract views(618)
  • HTML views(172)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return