Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction
- Corresponding author: Renhong LI, lirenhong@zstu.edu.cn
Citation:
Hao GUO, Tong WEI, Qingqing SHEN, Anqi HONG, Zeting DENG, Zheng FANG, Jichao SHI, Renhong LI. Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction[J]. Chinese Journal of Inorganic Chemistry,
;2024, 40(11): 2141-2154.
doi:
10.11862/CJIC.20240085
Jia X, Kang H J, Yang X X, Li Y L, Cui K, Wu X H, Qin W, Wu G. Amorphous Ni(Ⅲ)-based sulfides as bifunctional water and urea oxidation anode electrocatalysts for hydrogen generation from urea-containing water[J]. Appl. Catal. B-Environ., 2022,312121389. doi: 10.1016/j.apcatb.2022.121389
Yuan W Z, Jiang T F, Fang X Q, Fan Y, Qian S, Gao Y Y, Cheng N Y, Xue H G, Tian J Q. Interface engineering of S-doped Co2P@Ni2P core-shell heterostructures for efficient and energy-saving water splitting[J]. Chem. Eng. J., 2022,439135743. doi: 10.1016/j.cej.2022.135743
Zhu Y J, Liu C, Cui S W, Lu Z R, Ye J, Wen Y Z, Shi W J, Huang X X, Xue L Y, Bian J J, Li Y Y, Xu Y F, Zhang B. Multistep dissolution of lamellar crystals generates superthin amorphous Ni(OH)2 catalyst for UOR[J]. Adv. Mater., 2023,35(24)2301549. doi: 10.1002/adma.202301549
Zhang Q, Sun M S, Zhu J, Yang S D, Chen L, Yang X L, Wang P, Li K, Xue F N, Lu Y, Zhang J C, Zhao P. New strategy to synthesize oxygen vacancy-rich CoFe nanoneedles for overall water splitting and urea electrolysis[J]. Chem. Eng. J., 2022,432134275. doi: 10.1016/j.cej.2021.134275
Sun H N, Liu J P, Kim H, Song S Z, Fei L S, Hu Z W, Lin H J, Chen C T, Ciucci F, Jung W. Ni-doped CuO nanoarrays activate urea adsorption and stabilizes reaction intermediates to achieve high‑ performance urea oxidation catalysts[J]. Adv. Sci., 2022,9(34)2204800. doi: 10.1002/advs.202204800
Jiang H, Sun M Z, Wu S L, Huang B L, Lee C S, Zhang W J. Oxygen-incorporated NiMoP nanotube arrays as efficient bifunctional electrocatalysts for urea-assisted energy-saving hydrogen production in alkaline electrolyte[J]. Adv. Funct. Mater., 2021,31(43)2104951. doi: 10.1002/adfm.202104951
Li D, Zhou X M, Liu L L, Ruan Q D, Zhang X L, Wang B, Xiong F Y, Huang C, Chu P K. Reduced anodic energy depletion in electrolysis by urea and water co-oxidization on NiFe-LDH: Activity origin and plasma functionalized strategy[J]. Appl. Catal. B-Environ., 2023,324122240. doi: 10.1016/j.apcatb.2022.122240
Wang L P, Zhu Y J, Wen Y Z, Li S Y, Cui C Y, Ni F L, Liu Y X, Lin H P, Li Y Y, Peng H S, Zhang B. Regulating the local charge distribution of Ni active sites for the urea oxidation reaction[J]. Angew. Chem. Int. Ed., 2021,60(19):10577-10582. doi: 10.1002/anie.202100610
Yang L L, He R, Wang X, Yang T T, Zhang T, Zuo Y, Lu X, Liang Z F, Li J S, Arbiol J, Martínez-Alanis P R, Qi X Q, Cabot A. Self-supported NiO/CuO electrodes to boost urea oxidation in direct urea fuel cells[J]. Nano Energy, 2023,115108714. doi: 10.1016/j.nanoen.2023.108714
Stein J M. The effect of adrenaline and of α- and β-adrenergic blocking agents on ATP concentration and on incorporation of 32Pi into ATP in rat fat cells[J]. Biochem. Pharmacol., 1975,24(18):1659-1662. doi: 10.1016/0006-2952(75)90002-7
Zhu B J, Liang Z B, Zou R Q. Designing advanced catalysts for energy conversion based on urea oxidation reaction[J]. Small, 2020,16(7)1906133. doi: 10.1002/smll.201906133
Lin R J, Kang L Q, Zhao T Q, Feng J R, Celorrio V, Zhang G H, Cibin G, Kucernak A, Brett D J L, Corà F, Parkin I P, He G J. Identification and manipulation of dynamic active site deficiency-induced competing reactions in electrocatalytic oxidation processes[J]. Energy Environ. Sci., 2022,15(6):2386-2396. doi: 10.1039/D1EE03522C
Oshchepkov A G, Braesch G, Bonnefont A, Savinova E R, Chatenet M. Recent advances in the understanding of nickel-based catalysts for the oxidation of hydrogen-containing fuels in alkaline media[J]. ACS Catal., 2020,10(13):7043-7068. doi: 10.1021/acscatal.0c00101
Putri Y M T A, Gunlazuardi J, Yulizar Y, Wibowo R, Einaga Y, Ivandini T A. Recent progress in direct urea fuel cell[J]. Open Chem., 2021,19(1):1116-1133. doi: 10.1515/chem-2021-0100
Zemtsova V M, Oshchepkov A G, Savinova E R. Unveiling the role of iron in the nickel-catalyzed urea oxidation reaction[J]. ACS Catal., 2023,13(20):13466-13473. doi: 10.1021/acscatal.3c03126
Fu Q, Han J C, Wang X J, Xu P, Yao T, Zhong J, Zhong W W, Liu S W, Gao T L, Zhang Z H, Xu L L, Song B. 2D transition metal dichalcogenides: Design, modulation, and challenges in electrocatalysis[J]. Adv. Mater., 2021,33(6)1907818. doi: 10.1002/adma.201907818
Li Z J, Cao A, Zheng Q, Fu Y Y, Wang T T, Arul K T, Chen J L, Yang B, Adli N M, Lei L C, Dong C L, Xiao J P, Wu G, Hou Y. Elucidation of the synergistic effect of dopants and vacancies on promoted selectivity for CO2 electroreduction to formate[J]. Adv. Mater., 2021,33(2)2005113. doi: 10.1002/adma.202005113
Hao J, Liu J W, Wu D, Chen M X, Liang Y, Wang Q, Wang L, Fu X Z, Luo J L. In situ facile fabrication of Ni(OH)2 nanosheet arrays for electrocatalytic co-production of formate and hydrogen from methanol in alkaline solution[J]. Appl. Catal. B-Environ., 2021,281119510. doi: 10.1016/j.apcatb.2020.119510
Yang G C, Jiao Y Q, Yan H J, Xie Y, Wu A P, Dong X, Guo D Z, Tian C G, Fu H G. Interfacial engineering of MoO2-FeP heterojunction for highly efficient hydrogen evolution coupled with biomass electrooxidation[J]. Adv. Mater., 2020,32(17)2000455. doi: 10.1002/adma.202000455
Zhu X J, Dou X Y, Dai J, An X D, Guo Y Q, Zhang L D, Tao S, Zhao J Y, Chu W S, Zeng X C, Wu C Z, Xie Y. Metallic nickel hydroxide nanosheets give superior electrocatalytic oxidation of urea for fuel cells[J]. Angew. Chem. Int. Ed., 2016,55(40):12465-12469. doi: 10.1002/anie.201606313
Wang J Z, Wu Y H, Yu H L, Hang C S, Tang W S, Yang Y J, Chen H Y, Li H, Yu F Q. Three-dimensional pine-tree-like bimetallic sulfide with maximally exposed active sites by secondary structural restructuring for efficient electrocatalytic OER[J]. Int. J. Hydrog. Energy, 2024,79:1418-1426. doi: 10.1016/j.ijhydene.2024.07.111
Chen Z Y, Song Y, Cai J Y, Zheng X S, Han D D, Wu Y S, Zang Y P, Niu S W, Liu Y, Zhu J F, Liu X J, Wang G M. Tailoring the d-band centers enables Co4N nanosheets to be highly active for hydrogen evolution catalysis[J]. Angew. Chem. Int. Ed., 2018,130(18):5170-5174. doi: 10.1002/ange.201801834
Chhowalla M, Liu Z F, Zhang H. Two-dimensional transition metal dichalcogenide (TMD) nanosheets[J]. Chem. Soc. Rev., 2015,44(9):2584-2586. doi: 10.1039/C5CS90037A
Xie H, Feng Y F, He X Y, Zhu Y, Li Z Y, Liu H H, Zeng S Y, Qian Q Z, Zhang G Q. Construction of nitrogen-doped biphasic transition-metal sulfide nanosheet electrode for energy-efficient hydrogen production via urea electrolysis[J]. Small, 2023,19(17)2207425. doi: 10.1002/smll.202207425
Guo X L, Liu Z M, Liu F, Zhang J, Zheng L K, Hu Y C, Mao J, Liu H, Xue Y M, Tang C C. Sulfur vacancy-tailored NiCo2S4 nanosheet arrays for the hydrogen evolution reaction at all pH values[J]. Catal. Sci. Technol., 2020,10(4):1056-1065. doi: 10.1039/C9CY02189B
Xu W W, Lu Z Y, Wan P B, Kuang Y, Sun X M. High-performance water electrolysis system with double nanostructured superaerophobic electrodes[J]. Small, 2016,12(18):2492-2498. doi: 10.1002/smll.201600189
Liu H, Liu Z, Wang F L, Feng L G. Efficient catalysis of N doped NiS/NiS2 heterogeneous structure[J]. Chem. Eng. J., 2020,397125507. doi: 10.1016/j.cej.2020.125507
Wu Y S, Liu X J, Han D D, Song X Y, Shi L, Song Y, Niu S W, Xie Y F, Cai J Y, Wu S Y, Kang J, Zhou J B, Chen Z Y, Zheng X S, Xiao X H, Wang G M. Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis[J]. Nat. Commun., 2018,9(1)1425. doi: 10.1038/s41467-018-03858-w
Yang Y, Wang D R, Wang Y Y, Li Z L, Su R, Wang X, Xu T, Wang S X. Sulfur vacancy-rich carbonaceous Co9S8-ZnS nanotubes for the oxygen evolution reaction[J]. ACS Appl. Energy Mater., 2022,5(12):14869-14880. doi: 10.1021/acsaem.2c02350
Mockrin S C, Byers L D, Koshland D E. Subunit interactions in yeast glyceraldehyde-3-phosphate dehydrogenase[J]. Biochemistry, 1975,14(25):5428-5437. doi: 10.1021/bi00696a008
Li P, Li W Q, Huang Y Q, Huang Q H, Tian S H. 3D hierarchical- architectured nanoarray electrode for boosted and sustained urea electro-oxidation[J]. Small, 2023,19(30)2300725. doi: 10.1002/smll.202300725
Wang K L, Huang W, Cao Q H, Zhao Y J, Sun X J, Ding R, Lin W W, Liu E H, Gao P. Engineering NiF3/Ni2P heterojunction as efficient electrocatalysts for urea oxidation and splitting[J]. Chem. Eng. J., 2022,427130865. doi: 10.1016/j.cej.2021.130865
Ni S, Qu H N, Xu Z H, Zhu X Y, Xing H F, Wang L, Yu J M, Liu H Z, Chen C M, Yang L R. Interfacial engineering of the NiSe2/FeSe2 p-p heterojunction for promoting oxygen evolution reaction and electrocatalytic urea oxidation[J]. Appl. Catal. B-Environ., 2021,299120638. doi: 10.1016/j.apcatb.2021.120638
Liang C W, Zou P C, Nairan A, Zhang Y Q, Liu J X, Liu K W, Hu S Y, Kang F Y, Fan H J, Yang C. Exceptional performance of hierarchical Ni-Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting[J]. Energy Environ. Sci., 2020,13(1):86-95. doi: 10.1039/C9EE02388G
Chong L N, Gao G P, Wen J G, Li H X, Xu H P, Green Z, Sugar J D, Kropf A J, Xu W Q, Lin X M, Xu H, Wang L W, Liu D J. La- and Mn-doped cobalt spinel oxygen evolution catalyst for proton exchange membrane electrolysis[J]. Science, 2023,380(6645):609-616. doi: 10.1126/science.ade1499
Zhang B L, Qian X Y, Xu H, Jiang L, Xia J W, Chen H Q, He G Y. Se‑doping‑induced sulfur vacancy engineering of CuCo2S4 nanosheets for enhanced electrocatalytic overall water splitting[J]. Nanoscale, 2023,15(39):16199-16208. doi: 10.1039/D3NR03609J
He L X, Wang N, Xiang M L, Zhong L, Komarneni S, Hu W C. S- vacancy-rich NiFe-S nanosheets based on a fully electrochemical strategy for large-scale and quasi-industrial OER catalysts[J]. Appl. Catal. B-Environ., 2024,345123686. doi: 10.1016/j.apcatb.2023.123686
Liao Y, Chen Y Y, Li L, Luo S, Qing Y, Tian C H, Xu H, Zhang J X, Wu Y Q. Ultrafine homologous Ni2P-Co2P heterostructures via space-confined topological transformation for superior urea electrolysis[J]. Adv. Funct. Mater., 2023,33(42)2303300. doi: 10.1002/adfm.202303300
Feng X T, Jiao Q Z, Zhang J T, Cui H R, Li H S, Zhao Y, Feng C H. Integrating amorphous molybdenum sulfide nanosheets with a Co9S8@Ni3S2 array as an efficient electrocatalyst for overall water splitting[J]. Langmuir, 2022,38(11):3469-3479. doi: 10.1021/acs.langmuir.1c03264
Xu Z Y, Chen Q, Chen Q X, Wang P, Wang J X, Guo C, Qiu X Y, Han X, Hao J H. Interface enables faster surface reconstruction in a heterostructured Co-Ni-S electrocatalyst towards efficient urea oxidation[J]. J. Mater. Chem. A, 2022,10(45):24137-24146. doi: 10.1039/D2TA05494A
Zhang Y Z, Lei Y G, Yan Y, Cai W L, Huang J Y, Lai Y K, Lin Z Q. Enhancing hydrogen production capability from urine-containing sewage through optimization of urea oxidation pathways[J]. Appl. Catal. B-Environ., 2024,353124064. doi: 10.1016/j.apcatb.2024.124064
Wu F C, Ou G, Yang J, Li H N, Gao Y X, Chen F M, Wang Y, Shi Y M. Bifunctional nickel oxide-based nanosheets for highly efficient overall urea splitting[J]. Chem. Commun., 2019,55(46):6555-6558. doi: 10.1039/C9CC02507C
Wang C, Lu H L, Mao Z Y, Yan C L, Shen G Z, Wang X F. Bimetal schottky heterojunction boosting energy-saving hydrogen production from alkaline water via urea electrocatalysis[J]. Adv. Funct. Mater., 2020,30(21)2000556. doi: 10.1002/adfm.202000556
Tong Y, Chen L, Dyson P J, Fei Z F. Boosting hydrogen production via urea electrolysis on an amorphous nickel phosphide/graphene hybrid structure[J]. J. Mater. Sci., 2021,56(31):17709-17720. doi: 10.1007/s10853-021-06391-2
Xu Q L, Yu T Q, Chen J L, Qian G F, Song H N, Luo L, Chen Y L, Liu T Y, Wang Y Z, Yin S B. Coupling interface constructions of FeNi3-MoO2 heterostructures for efficient urea oxidation and hydrogen evolution reaction[J]. ACS Appl. Mater. Interfaces, 2021,13(14):16355-16363. doi: 10.1021/acsami.1c01188
Zhang J Y, He T, Wang M D, Qi R J, Yan Y, Dong Z H, Liu H F, Wang H M, Xia B Y. Energy-saving hydrogen production coupling urea oxidation over a bifunctional nickel-molybdenum nanotube array[J]. Nano Energy, 2019,60:894-902. doi: 10.1016/j.nanoen.2019.04.035
Luo X, Ji P X, Wang P Y, Cheng R L, Chen D, Lin C, Zhang J N, He J W, Shi Z H, Li N, Xiao S Q, Mu S C. Interface engineering of hierarchical branched Mo‑doped Ni3S2/NixPy hollow heterostructure nanorods for efficient overall water splitting[J]. Adv. Energy Mater., 2020,10(17)1903891. doi: 10.1002/aenm.201903891
Wang R Y, Wnag T, Feng C Q, Wu H M, Ding Y, Me H. Self‑ growing NiP2/ZnP4 heterostructured bifunctional catalyst towards overall urea-water electrolysis[J]. Int. J. Hydrog. Energy, 2021,46(77):38247-38257. doi: 10.1016/j.ijhydene.2021.09.070
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Jianchun Wang , Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
Zhicheng JU , Wenxuan FU , Baoyan WANG , Ao LUO , Jiangmin JIANG , Yueli SHI , Yongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
(a) Survey; (b) Ni2p; (c) Co2p; (d) S2p.
Inset: the comparison of LSV curves before and after stabilization (left) and the test image (right).
(a) 1 mol·L-1 KOH; (b) 1 mol·L-1 KOH+0.5 mol·L-1 urea; (c, d) 1 mol·L-1 KOH+0.5 mol·L-1 urea.
Inset: SEM image of catalyst surface after the i-t test.