Citation: Hao GUO, Tong WEI, Qingqing SHEN, Anqi HONG, Zeting DENG, Zheng FANG, Jichao SHI, Renhong LI. Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085 shu

Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction

  • Corresponding author: Renhong LI, lirenhong@zstu.edu.cn
  • Received Date: 18 March 2024
    Revised Date: 30 September 2024

Figures(8)

  • Herein, a one-step hydrothermal method was used to synthesize nickel foam (NF) self-supported Co9S8/Ni3S2@NF heterojunction nanorod arrays, which can be used as bifunctional catalysts for urea oxidation reaction (UOR) and hydrogen precipitation reaction (HER). The results of physical phase analysis, morphological characterization, and electrochemical tests showed that the Co9S8/Ni3S2@NF heterojunction hybridized nanorod arrays facilitated the electron transfer through the coupled hetero-interface between Co9S8 and Ni3S2, and improved the charge transfer rate. Meanwhile, the rough surface of the catalyst enabled it to exhibit excellent superhydrophilicity and superhydrophobicity, which facilitated gas transport as well as electrolyte diffusion. The catalyst was able to achieve current densities of 100 and 10 mA·cm-2 at low overpotentials of 120 and 103 mV in UOR and HER, respectively. In addition, using the synthesized Co9S8/Ni3S2@NF electrodes as cathode and anode, the operation of the two-electrode electrolytic cell required only a low voltage of 1.57 V when the current density reached 100 mA·cm-2 and operated stably for 27 h at a current density of 20 mA·cm-2 without significant activity decay.
  • 加载中
    1. [1]

      Jia X, Kang H J, Yang X X, Li Y L, Cui K, Wu X H, Qin W, Wu G. Amorphous Ni(Ⅲ)-based sulfides as bifunctional water and urea oxidation anode electrocatalysts for hydrogen generation from urea-containing water[J]. Appl. Catal. B-Environ., 2022,312121389. doi: 10.1016/j.apcatb.2022.121389

    2. [2]

      Yuan W Z, Jiang T F, Fang X Q, Fan Y, Qian S, Gao Y Y, Cheng N Y, Xue H G, Tian J Q. Interface engineering of S-doped Co2P@Ni2P core-shell heterostructures for efficient and energy-saving water splitting[J]. Chem. Eng. J., 2022,439135743. doi: 10.1016/j.cej.2022.135743

    3. [3]

      Zhu Y J, Liu C, Cui S W, Lu Z R, Ye J, Wen Y Z, Shi W J, Huang X X, Xue L Y, Bian J J, Li Y Y, Xu Y F, Zhang B. Multistep dissolution of lamellar crystals generates superthin amorphous Ni(OH)2 catalyst for UOR[J]. Adv. Mater., 2023,35(24)2301549. doi: 10.1002/adma.202301549

    4. [4]

      Zhang Q, Sun M S, Zhu J, Yang S D, Chen L, Yang X L, Wang P, Li K, Xue F N, Lu Y, Zhang J C, Zhao P. New strategy to synthesize oxygen vacancy-rich CoFe nanoneedles for overall water splitting and urea electrolysis[J]. Chem. Eng. J., 2022,432134275. doi: 10.1016/j.cej.2021.134275

    5. [5]

      Sun H N, Liu J P, Kim H, Song S Z, Fei L S, Hu Z W, Lin H J, Chen C T, Ciucci F, Jung W. Ni-doped CuO nanoarrays activate urea adsorption and stabilizes reaction intermediates to achieve high‑ performance urea oxidation catalysts[J]. Adv. Sci., 2022,9(34)2204800. doi: 10.1002/advs.202204800

    6. [6]

      Jiang H, Sun M Z, Wu S L, Huang B L, Lee C S, Zhang W J. Oxygen-incorporated NiMoP nanotube arrays as efficient bifunctional electrocatalysts for urea-assisted energy-saving hydrogen production in alkaline electrolyte[J]. Adv. Funct. Mater., 2021,31(43)2104951. doi: 10.1002/adfm.202104951

    7. [7]

      Li D, Zhou X M, Liu L L, Ruan Q D, Zhang X L, Wang B, Xiong F Y, Huang C, Chu P K. Reduced anodic energy depletion in electrolysis by urea and water co-oxidization on NiFe-LDH: Activity origin and plasma functionalized strategy[J]. Appl. Catal. B-Environ., 2023,324122240. doi: 10.1016/j.apcatb.2022.122240

    8. [8]

      Wang L P, Zhu Y J, Wen Y Z, Li S Y, Cui C Y, Ni F L, Liu Y X, Lin H P, Li Y Y, Peng H S, Zhang B. Regulating the local charge distribution of Ni active sites for the urea oxidation reaction[J]. Angew. Chem. Int. Ed., 2021,60(19):10577-10582. doi: 10.1002/anie.202100610

    9. [9]

      Yang L L, He R, Wang X, Yang T T, Zhang T, Zuo Y, Lu X, Liang Z F, Li J S, Arbiol J, Martínez-Alanis P R, Qi X Q, Cabot A. Self-supported NiO/CuO electrodes to boost urea oxidation in direct urea fuel cells[J]. Nano Energy, 2023,115108714. doi: 10.1016/j.nanoen.2023.108714

    10. [10]

      Stein J M. The effect of adrenaline and of α- and β-adrenergic blocking agents on ATP concentration and on incorporation of 32Pi into ATP in rat fat cells[J]. Biochem. Pharmacol., 1975,24(18):1659-1662. doi: 10.1016/0006-2952(75)90002-7

    11. [11]

      Zhu B J, Liang Z B, Zou R Q. Designing advanced catalysts for energy conversion based on urea oxidation reaction[J]. Small, 2020,16(7)1906133. doi: 10.1002/smll.201906133

    12. [12]

      Lin R J, Kang L Q, Zhao T Q, Feng J R, Celorrio V, Zhang G H, Cibin G, Kucernak A, Brett D J L, Corà F, Parkin I P, He G J. Identification and manipulation of dynamic active site deficiency-induced competing reactions in electrocatalytic oxidation processes[J]. Energy Environ. Sci., 2022,15(6):2386-2396. doi: 10.1039/D1EE03522C

    13. [13]

      Oshchepkov A G, Braesch G, Bonnefont A, Savinova E R, Chatenet M. Recent advances in the understanding of nickel-based catalysts for the oxidation of hydrogen-containing fuels in alkaline media[J]. ACS Catal., 2020,10(13):7043-7068. doi: 10.1021/acscatal.0c00101

    14. [14]

      Putri Y M T A, Gunlazuardi J, Yulizar Y, Wibowo R, Einaga Y, Ivandini T A. Recent progress in direct urea fuel cell[J]. Open Chem., 2021,19(1):1116-1133. doi: 10.1515/chem-2021-0100

    15. [15]

      Zemtsova V M, Oshchepkov A G, Savinova E R. Unveiling the role of iron in the nickel-catalyzed urea oxidation reaction[J]. ACS Catal., 2023,13(20):13466-13473. doi: 10.1021/acscatal.3c03126

    16. [16]

      Fu Q, Han J C, Wang X J, Xu P, Yao T, Zhong J, Zhong W W, Liu S W, Gao T L, Zhang Z H, Xu L L, Song B. 2D transition metal dichalcogenides: Design, modulation, and challenges in electrocatalysis[J]. Adv. Mater., 2021,33(6)1907818. doi: 10.1002/adma.201907818

    17. [17]

      Li Z J, Cao A, Zheng Q, Fu Y Y, Wang T T, Arul K T, Chen J L, Yang B, Adli N M, Lei L C, Dong C L, Xiao J P, Wu G, Hou Y. Elucidation of the synergistic effect of dopants and vacancies on promoted selectivity for CO2 electroreduction to formate[J]. Adv. Mater., 2021,33(2)2005113. doi: 10.1002/adma.202005113

    18. [18]

      Hao J, Liu J W, Wu D, Chen M X, Liang Y, Wang Q, Wang L, Fu X Z, Luo J L. In situ facile fabrication of Ni(OH)2 nanosheet arrays for electrocatalytic co-production of formate and hydrogen from methanol in alkaline solution[J]. Appl. Catal. B-Environ., 2021,281119510. doi: 10.1016/j.apcatb.2020.119510

    19. [19]

      Yang G C, Jiao Y Q, Yan H J, Xie Y, Wu A P, Dong X, Guo D Z, Tian C G, Fu H G. Interfacial engineering of MoO2-FeP heterojunction for highly efficient hydrogen evolution coupled with biomass electrooxidation[J]. Adv. Mater., 2020,32(17)2000455. doi: 10.1002/adma.202000455

    20. [20]

      Zhu X J, Dou X Y, Dai J, An X D, Guo Y Q, Zhang L D, Tao S, Zhao J Y, Chu W S, Zeng X C, Wu C Z, Xie Y. Metallic nickel hydroxide nanosheets give superior electrocatalytic oxidation of urea for fuel cells[J]. Angew. Chem. Int. Ed., 2016,55(40):12465-12469. doi: 10.1002/anie.201606313

    21. [21]

      Wang J Z, Wu Y H, Yu H L, Hang C S, Tang W S, Yang Y J, Chen H Y, Li H, Yu F Q. Three-dimensional pine-tree-like bimetallic sulfide with maximally exposed active sites by secondary structural restructuring for efficient electrocatalytic OER[J]. Int. J. Hydrog. Energy, 2024,79:1418-1426. doi: 10.1016/j.ijhydene.2024.07.111

    22. [22]

      Chen Z Y, Song Y, Cai J Y, Zheng X S, Han D D, Wu Y S, Zang Y P, Niu S W, Liu Y, Zhu J F, Liu X J, Wang G M. Tailoring the d-band centers enables Co4N nanosheets to be highly active for hydrogen evolution catalysis[J]. Angew. Chem. Int. Ed., 2018,130(18):5170-5174. doi: 10.1002/ange.201801834

    23. [23]

      Chhowalla M, Liu Z F, Zhang H. Two-dimensional transition metal dichalcogenide (TMD) nanosheets[J]. Chem. Soc. Rev., 2015,44(9):2584-2586. doi: 10.1039/C5CS90037A

    24. [24]

      Xie H, Feng Y F, He X Y, Zhu Y, Li Z Y, Liu H H, Zeng S Y, Qian Q Z, Zhang G Q. Construction of nitrogen-doped biphasic transition-metal sulfide nanosheet electrode for energy-efficient hydrogen production via urea electrolysis[J]. Small, 2023,19(17)2207425. doi: 10.1002/smll.202207425

    25. [25]

      Guo X L, Liu Z M, Liu F, Zhang J, Zheng L K, Hu Y C, Mao J, Liu H, Xue Y M, Tang C C. Sulfur vacancy-tailored NiCo2S4 nanosheet arrays for the hydrogen evolution reaction at all pH values[J]. Catal. Sci. Technol., 2020,10(4):1056-1065. doi: 10.1039/C9CY02189B

    26. [26]

      Xu W W, Lu Z Y, Wan P B, Kuang Y, Sun X M. High-performance water electrolysis system with double nanostructured superaerophobic electrodes[J]. Small, 2016,12(18):2492-2498. doi: 10.1002/smll.201600189

    27. [27]

      Liu H, Liu Z, Wang F L, Feng L G. Efficient catalysis of N doped NiS/NiS2 heterogeneous structure[J]. Chem. Eng. J., 2020,397125507. doi: 10.1016/j.cej.2020.125507

    28. [28]

      Wu Y S, Liu X J, Han D D, Song X Y, Shi L, Song Y, Niu S W, Xie Y F, Cai J Y, Wu S Y, Kang J, Zhou J B, Chen Z Y, Zheng X S, Xiao X H, Wang G M. Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis[J]. Nat. Commun., 2018,9(1)1425. doi: 10.1038/s41467-018-03858-w

    29. [29]

      Yang Y, Wang D R, Wang Y Y, Li Z L, Su R, Wang X, Xu T, Wang S X. Sulfur vacancy-rich carbonaceous Co9S8-ZnS nanotubes for the oxygen evolution reaction[J]. ACS Appl. Energy Mater., 2022,5(12):14869-14880. doi: 10.1021/acsaem.2c02350

    30. [30]

      Mockrin S C, Byers L D, Koshland D E. Subunit interactions in yeast glyceraldehyde-3-phosphate dehydrogenase[J]. Biochemistry, 1975,14(25):5428-5437. doi: 10.1021/bi00696a008

    31. [31]

      Li P, Li W Q, Huang Y Q, Huang Q H, Tian S H. 3D hierarchical- architectured nanoarray electrode for boosted and sustained urea electro-oxidation[J]. Small, 2023,19(30)2300725. doi: 10.1002/smll.202300725

    32. [32]

      Wang K L, Huang W, Cao Q H, Zhao Y J, Sun X J, Ding R, Lin W W, Liu E H, Gao P. Engineering NiF3/Ni2P heterojunction as efficient electrocatalysts for urea oxidation and splitting[J]. Chem. Eng. J., 2022,427130865. doi: 10.1016/j.cej.2021.130865

    33. [33]

      Ni S, Qu H N, Xu Z H, Zhu X Y, Xing H F, Wang L, Yu J M, Liu H Z, Chen C M, Yang L R. Interfacial engineering of the NiSe2/FeSe2 p-p heterojunction for promoting oxygen evolution reaction and electrocatalytic urea oxidation[J]. Appl. Catal. B-Environ., 2021,299120638. doi: 10.1016/j.apcatb.2021.120638

    34. [34]

      Liang C W, Zou P C, Nairan A, Zhang Y Q, Liu J X, Liu K W, Hu S Y, Kang F Y, Fan H J, Yang C. Exceptional performance of hierarchical Ni-Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting[J]. Energy Environ. Sci., 2020,13(1):86-95. doi: 10.1039/C9EE02388G

    35. [35]

      Chong L N, Gao G P, Wen J G, Li H X, Xu H P, Green Z, Sugar J D, Kropf A J, Xu W Q, Lin X M, Xu H, Wang L W, Liu D J. La- and Mn-doped cobalt spinel oxygen evolution catalyst for proton exchange membrane electrolysis[J]. Science, 2023,380(6645):609-616. doi: 10.1126/science.ade1499

    36. [36]

      Zhang B L, Qian X Y, Xu H, Jiang L, Xia J W, Chen H Q, He G Y. Se‑doping‑induced sulfur vacancy engineering of CuCo2S4 nanosheets for enhanced electrocatalytic overall water splitting[J]. Nanoscale, 2023,15(39):16199-16208. doi: 10.1039/D3NR03609J

    37. [37]

      He L X, Wang N, Xiang M L, Zhong L, Komarneni S, Hu W C. S- vacancy-rich NiFe-S nanosheets based on a fully electrochemical strategy for large-scale and quasi-industrial OER catalysts[J]. Appl. Catal. B-Environ., 2024,345123686. doi: 10.1016/j.apcatb.2023.123686

    38. [38]

      Liao Y, Chen Y Y, Li L, Luo S, Qing Y, Tian C H, Xu H, Zhang J X, Wu Y Q. Ultrafine homologous Ni2P-Co2P heterostructures via space-confined topological transformation for superior urea electrolysis[J]. Adv. Funct. Mater., 2023,33(42)2303300. doi: 10.1002/adfm.202303300

    39. [39]

      Feng X T, Jiao Q Z, Zhang J T, Cui H R, Li H S, Zhao Y, Feng C H. Integrating amorphous molybdenum sulfide nanosheets with a Co9S8@Ni3S2 array as an efficient electrocatalyst for overall water splitting[J]. Langmuir, 2022,38(11):3469-3479. doi: 10.1021/acs.langmuir.1c03264

    40. [40]

      Xu Z Y, Chen Q, Chen Q X, Wang P, Wang J X, Guo C, Qiu X Y, Han X, Hao J H. Interface enables faster surface reconstruction in a heterostructured Co-Ni-S electrocatalyst towards efficient urea oxidation[J]. J. Mater. Chem. A, 2022,10(45):24137-24146. doi: 10.1039/D2TA05494A

    41. [41]

      Zhang Y Z, Lei Y G, Yan Y, Cai W L, Huang J Y, Lai Y K, Lin Z Q. Enhancing hydrogen production capability from urine-containing sewage through optimization of urea oxidation pathways[J]. Appl. Catal. B-Environ., 2024,353124064. doi: 10.1016/j.apcatb.2024.124064

    42. [42]

      Wu F C, Ou G, Yang J, Li H N, Gao Y X, Chen F M, Wang Y, Shi Y M. Bifunctional nickel oxide-based nanosheets for highly efficient overall urea splitting[J]. Chem. Commun., 2019,55(46):6555-6558. doi: 10.1039/C9CC02507C

    43. [43]

      Wang C, Lu H L, Mao Z Y, Yan C L, Shen G Z, Wang X F. Bimetal schottky heterojunction boosting energy-saving hydrogen production from alkaline water via urea electrocatalysis[J]. Adv. Funct. Mater., 2020,30(21)2000556. doi: 10.1002/adfm.202000556

    44. [44]

      Tong Y, Chen L, Dyson P J, Fei Z F. Boosting hydrogen production via urea electrolysis on an amorphous nickel phosphide/graphene hybrid structure[J]. J. Mater. Sci., 2021,56(31):17709-17720. doi: 10.1007/s10853-021-06391-2

    45. [45]

      Xu Q L, Yu T Q, Chen J L, Qian G F, Song H N, Luo L, Chen Y L, Liu T Y, Wang Y Z, Yin S B. Coupling interface constructions of FeNi3-MoO2 heterostructures for efficient urea oxidation and hydrogen evolution reaction[J]. ACS Appl. Mater. Interfaces, 2021,13(14):16355-16363. doi: 10.1021/acsami.1c01188

    46. [46]

      Zhang J Y, He T, Wang M D, Qi R J, Yan Y, Dong Z H, Liu H F, Wang H M, Xia B Y. Energy-saving hydrogen production coupling urea oxidation over a bifunctional nickel-molybdenum nanotube array[J]. Nano Energy, 2019,60:894-902. doi: 10.1016/j.nanoen.2019.04.035

    47. [47]

      Luo X, Ji P X, Wang P Y, Cheng R L, Chen D, Lin C, Zhang J N, He J W, Shi Z H, Li N, Xiao S Q, Mu S C. Interface engineering of hierarchical branched Mo‑doped Ni3S2/NixPy hollow heterostructure nanorods for efficient overall water splitting[J]. Adv. Energy Mater., 2020,10(17)1903891. doi: 10.1002/aenm.201903891

    48. [48]

      Wang R Y, Wnag T, Feng C Q, Wu H M, Ding Y, Me H. Self‑ growing NiP2/ZnP4 heterostructured bifunctional catalyst towards overall urea-water electrolysis[J]. Int. J. Hydrog. Energy, 2021,46(77):38247-38257. doi: 10.1016/j.ijhydene.2021.09.070

  • 加载中
    1. [1]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    2. [2]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    3. [3]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    6. [6]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    7. [7]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    8. [8]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    9. [9]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    10. [10]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    11. [11]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    12. [12]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    13. [13]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    14. [14]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    15. [15]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    16. [16]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    17. [17]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    18. [18]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    19. [19]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    20. [20]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

Metrics
  • PDF Downloads(10)
  • Abstract views(854)
  • HTML views(156)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return