Citation: Liyang ZHANG, Dongdong YANG, Ning LI, Yuanyu YANG, Qi MA. Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079 shu

Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate

  • Corresponding author: Qi MA, maqihx@163.com
  • Received Date: 13 March 2024
    Revised Date: 30 August 2024

Figures(14)

  • We have successfully synthesized three cadmium(Ⅱ) complexes [Cd(Hppb)2Br2] (1), [Cd2(ppb)2Br2] (2) and [Cd(Hppb)Br2]n (3) in which the bromide ions are involved based on an asymmetric ligand 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate (Hppb). Employment of different synthetic conditions has resulted in different architectures. In the three complexes, the ratios of Cd(Ⅱ) ions, ligands, and bromide ions were 1∶2∶2, 1∶1∶1, and 1∶1∶2, respectively, resulting in different structures of mononuclear (0D), binuclear (0D), and 1D framework. The Cd(Ⅱ) coordinated environments in 1 are slightly distorted octahedral geometries, but central ions in 2 and 3 display distorted square pyramidal geometries. There are obvious differences in the ligation modes of the ppb- or Hppb ligands for both complexes. In 1, two Hppb ligands display μ1-κN, N′ coordination modes. In 2, two ppb- ligands display μ2-κN, N′∶κO coordination modes. Two ppb- ligands act as two μ1, 1-bridges linking the binuclear Cd(Ⅱ) cations with a distance of 0.409 1(4) nm. In 3, the neutral Hppb ligands exhibit a μ2-κN, N′∶κO coordination mode, and connecting Cd(Ⅱ) ions by μ1, 6-bridges and forming an infinite 1D chain along the b-axis. The complexes were both studied using Hirshfeld surface analyses and 2D fingerprint plots. Moreover, the photoluminescent properties of 1-3 indicate that the coordination anions make a great contribution to the fluorescent emission of Cd(Ⅱ) polymers.
  • 加载中
    1. [1]

      Dey C, Kundu T, Biswal B P, Mallick A, Banerjee R. Crystalline metal-organic frameworks (MOFs): Synthesis, structure and function. Acta Crystallogr. Sect. B, 2014, 70(S1): 3-10

    2. [2]

      Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs): Routes to various mof topologies, morphologies, and composites. Chem. Rev., 2011, 112(2): 933-969

    3. [3]

      Ren J, Dyosiba X, Musyoka N M, Langmi H W, Mathe M, Liao S. Review on the current practices and efforts towards pilot-scale production of metal-organic frameworks (MOFs). Coord. Chem. Rev., 2017, 352: 187-219  doi: 10.1016/j.ccr.2017.09.005

    4. [4]

      Yang L, Liu Y L, Liu C G, Ye F, Fu Y. A luminescent sensor based on a new Cd-MOF for nitro explosives and organophosphorus pesticides detection. Inorg. Chem. Commun., 2020, 122: 108272  doi: 10.1016/j.inoche.2020.108272

    5. [5]

      Dong J, Zhao D, Lu Y, Sun W Y. Photoluminescent metal-organic frameworks and their application for sensing biomolecules. J. Mater. Chem. A, 2019, 7(40): 22744-22767  doi: 10.1039/C9TA07022B

    6. [6]

      Ma W P, Yan B. Lanthanide functionalized MOF thin films as effective luminescent materials and chemical sensors for ammonia. Dalton Trans., 2020, 49(44): 15663-15671  doi: 10.1039/D0DT03069D

    7. [7]

      Zahedi M, Shaabani B, Englert U, Rad-yousefnia N, Blake G R, Kazak C. Cd(Ⅱ) coordination polymers based on expanded N, N′-heteroaromatic donor ligands. Polyhedron, 2017, 133: 110-118  doi: 10.1016/j.poly.2017.05.023

    8. [8]

      Zhang Y J, Gao L L, Ma S, Hu T P. Porous MB@Cd-MOF obtained by post-modification: Self-calibrated fluorescent turn-on sensor for highly sensitive detection of carbaryl. Cryst. Growth Des., 2022, 22(4): 2662-2669  doi: 10.1021/acs.cgd.2c00089

    9. [9]

      Jin S W, Lin Z H, Zhou Y, Wang D Q, Chen G Q, Ji Z Y, Huang T S. Syntheses, characterization and crystal structures of eight Cd(Ⅱ) carboxylates containing 3,5-dimethylpyrazole. Polyhedron, 2014, 74: 79-92  doi: 10.1016/j.poly.2014.02.041

    10. [10]

      Nath B, Baruah J B. Cadmium(Ⅱ) dicarboxylate complexes of 2,2′-[2-fluoro-phenylmethylidenebis (3,5-methyl-2-phenyleneoxy)]diacetic acid formed in different solvents. Polyhedron, 2014, 79: 291-299  doi: 10.1016/j.poly.2014.04.057

    11. [11]

      Deka R, Rajak R, Kumar V, Mobin S M. Effect of electrolytic cations on a 3D Cd-MOF for supercapacitive electrodes. Inorg. Chem., 2023, 62(7): 3084-3094  doi: 10.1021/acs.inorgchem.2c03879

    12. [12]

      Zikode M, Ojwach S O, Akerman M P. Structurally rigid bis(pyrazolyl)pyridine Zn(Ⅱ) and Cu(Ⅱ) complexes: Structures and kinetic studies in ring-opening polymerization of ε-caprolactone. Appl. Organomet. Chem., 2016, 31(2): e3556

    13. [13]

      Zhang L Y, Lu LP, Zhu M L. Two cadmium(Ⅱ) complexes constructed by 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate: Crystal structures, luminescent properties and Hirshfeld surface analyses. J. Chem. Crystallogr., 2019, 50(2): 122-132

    14. [14]

      Xu L, Yan S, Choi E Y, Lee J Y, Kwon Y U. Product control by halide ions of ionic liquids in the ionothermal syntheses of Ni-(H)BTC metal-organic frameworks. Chem. Commun., 2009(23): 3431-3433  doi: 10.1039/b902223f

    15. [15]

      Bai H Y, Ma J F, Yang J, Liu Y Y, Hua W, Ma J C. Effect of anions on the self-assembly of Cd(Ⅱ)-containing coordination polymers based on a novel flexible tetrakis(imidazole) ligand. Cryst. Growth. Des., 2009, 10(2): 995-1016

    16. [16]

      Saxena P, Thirupathi N. Reactions of Cd(OAc)2·2H2O with variously substituted pyridines: Efforts to unravel the factors that determine structure/nuclearity of the products. Polyhedron, 2015, 98: 238-250  doi: 10.1016/j.poly.2015.06.002

    17. [17]

      Zahedi M, Shaabani B, Englert U, van Leusen J. Organic-inorganic hybrid materials from divalent metal cations and expanded N, N′-donor linkers. Z. Krist.-Cryst. Mater., 2018, 233(2): 97-111  doi: 10.1515/zkri-2017-2084

    18. [18]

      Mandal A, Patel B K. Molecular structures and fluorescence property of Zn(Ⅱ), Cd(Ⅱ) complexes of 3-pyridyl-5-aryl-(1H)-1,2,4-triazoles. Polyhedron, 2017, 132: 112-122  doi: 10.1016/j.poly.2017.04.040

    19. [19]

      Menzel S, Millan S, Hofert S P, Nuhnen A, Gokpinar S, Schmitz A, Janiak C. Increase of network hydrophilicity from sql to lvt supramolecular isomers of Cu-MOFs with the bifunctional 4-(3,5-dimethyl-1H-pyrazol-4-yl)benzoate linker. Dalton Trans., 2020, 49(36): 12854-12864  doi: 10.1039/D0DT02642E

    20. [20]

      Jin S W, Liu H, Chen G Q, An Z Y, Lou Y L, Huang K, Wang D Q. Syntheses and crystal structures of copper(Ⅱ), zinc(Ⅱ) and cadmium(Ⅱ) complexes containing pyridine, quinoline and 2-methylquinoline. Polyhedron, 2015, 95: 91-107  doi: 10.1016/j.poly.2015.04.017

    21. [21]

      Sheldrick G M. SHELXT: Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A, 2015, A71: 3-8

    22. [22]

      Spackman M A, McKinnon J J, Jayatilaka D. Electrostatic potentials mapped on Hirshfeld surfaces provide direct insight into intermolecular interactions in crystals. CrystEngComm, 2008, 10(4): 377-388

    23. [23]

      Spackman M A, McKinnon J J. Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm, 2002, 4(66): 378-392  doi: 10.1039/B203191B

    24. [24]

      McKinnon J J, Mitchell A S, Spackman MA. Hirshfeld surfaces: A new tool for visualising and exploring molecular crystals. Chem.-Eur. J., 1998, 4(11): 2136-2141  doi: 10.1002/(SICI)1521-3765(19981102)4:11<2136::AID-CHEM2136>3.0.CO;2-G

    25. [25]

      Yang D D, Lu L P, Zhu M L. A design for detecting phosphate ions in aqueous solution by luminescent Tb-coordination polymer. Inorg. Chimi. Acta, 2021, 515: 120030  doi: 10.1016/j.ica.2020.120030

    26. [26]

      Yang D D, Liu X X, Lu L, Zhu M L. Effects of two different solvents on the syntheses, structural diversity, and magnetic properties of six Mn(Ⅱ) complexes derived from 3,3′-((5-carboxy-1,3-phenylene)bis(oxy))dibenzoate and variable N-donor ligands. CrystEngComm, 2020, 22(46): 8088-8099  doi: 10.1039/D0CE01383H

    27. [27]

      Yang F, Ren Y X, Li D S, Fu F, Qi G C, Wang Y Y. 1D zigzag chain and 0D monomer Cd(Ⅱ)/Zn(Ⅱ) compounds based on flexible phenylenediacetic ligand: Synthesis, crystal structures and fluorescent properties. J. Mol. Struct., 2008, 892(1/2/3): 283-288

    28. [28]

      Addison A W, Rao T N, Reedijk J, Vanrijn J, Verschoor G C. Synthesis, structure, and spectroscopic properties of copper(Ⅱ) compounds containing nitrogen sulfur donor ligands: The crystal and molecular-structure of aqua[1,7-bis(n-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(Ⅱ) perchlorate. J. Chem. Soc. Dalton Trans., 1984(7): 1349-1356  doi: 10.1039/DT9840001349

    29. [29]

      Zheng S L, Yang J H, Yu X L, Chen X M, Wong W T. Syntheses, structures, photoluminescence, and theoretical studies of d10 metal complexes of 2,2′-dihydroxy-[1, 1′]binaphthalenyl-3,3′-dicarboxylate. Inorg. Chem., 2004, 43: 830-838  doi: 10.1021/ic034847i

    30. [30]

      LI J K, ZHAO S H, HU C W. Polyoxometalate-based host-guest framework materials POMs@MOFs(COFs). Chinese J. Inorg. Chem., 2019, 35(11): 1934-1956  doi: 10.11862/CJIC.2019.230

    31. [31]

      LI F F, HE J. Synthesis, structural and magnetic characterization of Fe(Ⅱ)/Co(Ⅱ)isomorphous complexes based on a dipyrazole-containing tetracarboxylate ligand. Chinese J. Inorg. Chem., 2022, 38(11): 2259-2266  doi: 10.11862/CJIC.2022.226

    32. [32]

      WANG G F, SUN X W, SONG S F, LÜ M. Synthesis of a Cd(Ⅱ)-based coordination polymer for luminescence detecting 2,4,6-trinitrophenol. Chinese J. Inorg. Chem., 2023, 39(12): 2407-2414  doi: 10.11862/CJIC.2023.197

  • 加载中
    1. [1]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    2. [2]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    3. [3]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    4. [4]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    5. [5]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    6. [6]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    7. [7]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    8. [8]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    9. [9]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    10. [10]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    11. [11]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    12. [12]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    13. [13]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    14. [14]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    15. [15]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    16. [16]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    17. [17]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    18. [18]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    19. [19]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    20. [20]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

Metrics
  • PDF Downloads(3)
  • Abstract views(538)
  • HTML views(90)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return