Citation: Yingchun ZHANG, Yiwei SHI, Ruijie YANG, Xin WANG, Zhiguo SONG, Min WANG. Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078 shu

Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction

Figures(11)

  • Two supramolecular complexes of [Mn2(2, 2′-bipy)4(H2O)Cl3](L1)·6H2O (1) and [Mn(2, 2′-bipy)2(H2O)Cl](L2)·3H2O (2) (L1-=p-methylbenzenesulfonate anion, L2-=m-nitrobenzenesulfonate anion, 2, 2′-bipy=2, 2′-bipyridine) were synthesized by solvothermal method. The complexes were characterized by single-crystal X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, and nitrogen adsorption-desorption test. Using the Mannich reaction as a probe, the catalytic properties of the two complexes were studied, and the effects of the structure of the complexes on their catalytic properties were analyzed by comparing the results of scanning electron microscopy and powder X-ray diffraction. Finally, density functional theory was used to predict the active sites of the complexes, and X-ray photoelectron spectroscopy was used to prove the activation of the active sites. Then the mechanism of Mannich reaction catalyzed by the complexes was clarified.
  • 加载中
    1. [1]

      Pu M X, Guo H Y, Quan Z S, Li X T, Shen Q K. Application of the Mannich reaction in the structural modification of natural products[J]. J. Enzym. Inhib. Med. Chem., 2023,38(1):1-18.

    2. [2]

      Kulkarni P. Sulfanilic acid catalysed one-pot three-component Mannich reaction for synthesis of β-amino ketones[J]. Vietnam J. Chem., 2020,58(5):675-687. doi: 10.1002/vjch.202000090

    3. [3]

      Rani P, Prakash M, Samanta S. Organobase-catalyzed Mannich reaction of cyclic N-sulfonyl imines and 1, 2-diketones: A sustainable approach to 4-(3-arylquinoxalin-2-ylmethyl) sufamidates[J]. Tetrahedron Lett., 2023,122154490. doi: 10.1016/j.tetlet.2023.154490

    4. [4]

      Mohurle S, Pasuparthy S D, Talamarla D, Kali V, Maiti B. [BCMIM][Cl] ionic liquid catalyzed diastereoselective synthesis of β-amino ketones via facile, one-pot, multicomponent Mannich reaction under solvent-free condition[J]. J. Heterocycl. Chem., 2023,60(9):1545-1557. doi: 10.1002/jhet.4698

    5. [5]

      Azizi N, Edrisi M. Deep eutectic solvent immobilized on SBA-15 as a novel separable catalyst for one-pot three-component Mannich reaction[J]. Microporous Mesoporous Mat., 2017,240(11):130-136.

    6. [6]

      Kalhor H R, Piraman Z, Fathali Y. Hen egg white lysozyme encapsulated in ZIF-8 for performing promiscuous enzymatic Mannich reaction[J]. iScience, 2023,26(10):1-21.

    7. [7]

      Yang Z N, He H K, Tian R, Wu R R, Hu S, Wu Y, Zhou H. A zinc/ PyBisulidine catalyzed asymmetric Mannich reaction of N-tosyl imines with 3-acyloxy-2-oxindoles[J]. Org. Biomol. Chem., 2021,19(34):7460-7469. doi: 10.1039/D1OB01328A

    8. [8]

      Mote N R, Chikkali S H. Hydrogen-bonding-assisted supramolecular metal catalysis[J]. Chem. Asian J., 2018,13(23):3623-3646. doi: 10.1002/asia.201801302

    9. [9]

      Deng J H, Luo J, Mao Y L, Lai S, Gong Y N, Zhong D C, Lu T B. π-π stacking interactions: Non-negligible forces for stabilizing porous supramolecular frameworks[J]. Sci. Adv., 2020,6(2)eaax9976. doi: 10.1126/sciadv.aax9976

    10. [10]

      Wang Y J, Wang M Y, Li Y B, Liu Q. Homogeneous manganese- catalyzed hydrogenation and dehydrogenation reactions[J]. Chem, 2021,7(5):1180-1223. doi: 10.1016/j.chempr.2020.11.013

    11. [11]

      Liu C G, Wang M Y, Liu S H, Wang Y J, Peng Y, Lan Y, Liu Q. Manganese-catalyzed asymmetric hydrogenation of quinolines enabled by π-π interaction[J]. Angew. Chem. Int. Ed., 2021,60(10):5108-5113. doi: 10.1002/anie.202013540

    12. [12]

      Zhang D P, Lan W L, Zhou Z, Yang L, Liu Q Y, Bian Y Z, Jiang J Z. Manganese(Ⅲ) porphyrin-based magnetic materials[J]. Top. Curr. Chem., 2019,377(18):1-43.

    13. [13]

      Tao P, Liu S J, Wong W Y. Phosphorescent manganese(Ⅱ) complexes and their emerging applications[J]. Adv. Opt. Mater., 2020,8(20)2000985. doi: 10.1002/adom.202000985

    14. [14]

      QI J Y, DANG X Y, ZHANG Y C, SONG Z G, WANG M. Study on the structure and catalytic property of two copper benzenesulfonate complexes[J]. Chemical Research and Application, 2022,34(11):2610-2618. doi: 10.3969/j.issn.1004-1656.2022.11.003

    15. [15]

      Lin R B, Chen B. Hydrogen-bonded organic frameworks: Chemistry and functions[J]. Chem, 2022,8(8):2114-2135. doi: 10.1016/j.chempr.2022.06.015

    16. [16]

      Bruker. SMART (Version 5.628), SAINT (Version 6.45), and SADABS. Bruker AXS Inc. : Madison, WI, 2001.

    17. [17]

      Sheldrick G M. SHELXL-97, Program for the refinement of crystal structures. University of Göttingen, Germany, 1997.

    18. [18]

      Wang C P, Wang Z, Mao S J, Chen Z R, Wang Y. Coordination environment of active sites and their effect on catalytic performance of heterogeneous catalysts[J]. Chin. J. Catal., 2022,43(4):928-955. doi: 10.1016/S1872-2067(21)63924-4

    19. [19]

      Xie C, Yan D F, Li H, Du S Q, Chen W, Wang Y Y, Zou Y Q, Chen R, Wang S Y. Defect chemistry in heterogeneous catalysis: Recognition, understanding, and utilization[J]. ACS Catal., 2020,10(19):11082-11098. doi: 10.1021/acscatal.0c03034

    20. [20]

      Han B, Wang H L, Wang C M, Wu H, Zhou W, Chen B L, Jiang J Z. Postsynthetic metalation of a robust hydrogen-bonded organic framework for heterogeneous catalysis[J]. J. Am. Chem. Soc., 2019,141(22):8737-8740. doi: 10.1021/jacs.9b03766

    21. [21]

      XIA X, WANG S, YANG X Q, FAN R, WEI R Z, LIU Z, TANG Q. Synthesis, crystal structure and properties of zinc complex based on 2, 5-bis(trifluoromethyl) terephthalic acid ligand[J]. Chinese J. Inorg. Chem., 2021,37(12):2133-2140. doi: 10.11862/CJIC.2021.254

    22. [22]

      Vassileva P, Krastev V, Lakov L, Peshev O. XPS determination of the binding energies of phosphorus and nitrogen in phosphazenes[J]. J. Mater. Sci., 2004,39(9):3201-3202. doi: 10.1023/B:JMSC.0000025859.82714.4a

    23. [23]

      Neuvonen H, Neuvonen K, Koch A, Kleinpeter E, Pasanen P. Electron-withdrawing substituents decrease the electrophilicity of the carbonyl carbon. An investigation with the aid of 13C NMR chemical shifts, ν(C=O) frequency values, charge densities, and isodesmic reactions to interprete substituent effects on reactivity[J]. J. Org. Chem., 2002,67(20):6995-7003. doi: 10.1021/jo020121c

    24. [24]

      Rakhtshah J, Ghaderi H, Yaghoobi F, Baghery S, Shaabani B. Synthesis of α-aminoalkyl naphthol derivatives in the presence of nickel complexes immobilized on multi-wall carbon nanotubes[J]. Mater. Chem. Phys., 2020,239121985. doi: 10.1016/j.matchemphys.2019.121985

  • 加载中
    1. [1]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    2. [2]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    3. [3]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    4. [4]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    5. [5]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    6. [6]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    7. [7]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    8. [8]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    9. [9]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    10. [10]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    11. [11]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    12. [12]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    13. [13]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    14. [14]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    15. [15]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    16. [16]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    17. [17]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    18. [18]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    19. [19]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    20. [20]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

Metrics
  • PDF Downloads(9)
  • Abstract views(851)
  • HTML views(121)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return