Citation: Min LI, Xianfeng MENG. Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065 shu

Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites

  • Corresponding author: Xianfeng MENG, mxf2029@ujs.edu.cn
  • Received Date: 27 February 2024
    Revised Date: 18 July 2024

Figures(11)

  • Co@C/MoS2 wave-absorbing materials were successfully synthesized by the combination of carbonization techniques and hydrothermal reactions. The results indicate that the carbonization temperature of ZIF-67 and the microstructure of Co@C/MoS2 critically influence the wave absorption properties of the Co@C/MoS2 composite material. The wrinkled structure of Co@C/MoS2 enhances the reflection and scattering of incident waves, thereby optimizing the impedance matching and enhancing the electromagnetic wave (EMW) performance of the material. When the calcination temperature of ZIF-67 was 800 ℃, the minimum reflection loss (RLmin) of -101.84 dB was obtained at the thickness of 1.7 mm, and the corresponding effective absorption bandwidth (EAB) was up to 7.4 GHz.
  • 加载中
    1. [1]

      Guan X M, Tan S J, Wang L Q, Zhao Y, Ji G G. Electronic modulation strategy for mass-producible ultrastrong multifunctional biomass-based fiber aerogel devices: Interfacial bridging[J]. ACS Nano., 2023,203:525-536.

    2. [2]

      WANG F, JI G B. Progress in structural regulation and electromagnetic properties of perovskite oxides[J]. Chinese J. Inorg. Chem., 2021,37(8):1353-1363.  

    3. [3]

      LI G Y, HE Q T. Optimal design of composite multilayer absorbing materials based on step-by-step matching technique[J]. Electr. Comp. Mater., 2023,42(10):1217-1220.

    4. [4]

      Liu Q T, Liu X F, Feng H B, Shui H C, Yu R H. Metal organic framework-derived Fe/carbon porous composite with low Fe content for lightweight and highly efficient electromagnetic wave absorber[J]. Chem. Eng. J., 2017,314:320-327. doi: 10.1016/j.cej.2016.11.089

    5. [5]

      Jia Z R, Zhang X Y, Gu Z, Wu G L. MOF-derived Ni-Co bimetal/porous carbon composites as electromagnetic wave absorber[J]. J. Adv. Compos. Hybrid Mater., 2022,6(1)28.

    6. [6]

      Liu Y L, Luo D J, Deng Y, Zheng J L, Wu F Z, Dai X Y, Deng C. ZIF-67@MXene structure synergistically improve heat storage and photothermal conversion of phase change material[J]. J. Energy Storage, 2023,67107641. doi: 10.1016/j.est.2023.107641

    7. [7]

      Zhu X Y, Qiu H F, Chen P, Wang R Q, Ping C Y. Porous C/Co (derived from ZIF-67) embedded in anazotic g-C3N4 (PC/Co/ACN) composite as a super electromagnetic wave absorber[J]. Carbon, 2023,207:59-66. doi: 10.1016/j.carbon.2023.02.063

    8. [8]

      Wang Y C, Liu J Y, Duan L T, He C, Zhou J T. Enhanced electromagnetic wave absorption using bimetallic MOFs-derived TiO2/Co/C heterostructures[J]. Carbon, 2023,216118497.

    9. [9]

      Wu F, Li Q, Liu Z H, Shah T, Ahmad M, Zhang Q Y, Zhang B L. Fabrication of binary MOF-derived hybrid nanoflowers via selective assembly and their microwave absorbing properties[J]. Carbon, 2021,182:484-496.

    10. [10]

      Ma M, Zheng Q, Zhang X C, Li L, Cao M S. VSe2/CNTs nanocomposites toward superior electromagnetic wave absorption performance[J]. Carbon, 2023,212118159.

    11. [11]

      Zhang J X, Liu Y Y, Liao Z J, Hu J H, Ma A J, Ma Y, Feng C, Ma M L. MoS2-based materials for microwave absorption: An overview of recent advances and prospects[J]. Synth. Met., 2022,291117188.

    12. [12]

      Zhao X X, Huang Y, Liu X D, Yu M, Zong M, Li T H. Magnetic nanorods/carbon fibers heterostructures coated with flower-like MoS2 layers for superior microwave absorption[J]. Carbon, 2023,213118265.

    13. [13]

      Liu H M, Zhang M, Ye Y F, Yi J, Zhang Y L, Liu Q C. Porous cobalt ferrite microspheres decorated two-dimensional MoS2 as an efficient and wideband microwave absorber[J]. J. Alloy. Compd., 2022,892162126.

    14. [14]

      Cheng J, Cai L, Shi Y Y, Pan F, Dong Y Y, Zhu X J, Jiang H J, Zhang X, Xiang Z, Lu W. Polarization loss-enhanced honeycomb-like MoS2 nanoflowers/undaria pinnatifida-derived porous carbon composites with high-efficient electromagnetic wave absorption[J]. Chem. Eng. J., 2022,431134284.

    15. [15]

      Feng Z, Yang P P, Wen G S, Li H B, Liu Y, Zhao X C. One-step synthesis of MoS2 nanoparticles with different morphologies for electromagnetic wave absorption[J]. Appl. Surf. Sci., 2020,502144129.

    16. [16]

      Jiang R, Wang Y Q, Wang J Y, He Q C, Wu G L. Controlled formation of multiple core-shell structures in metal-organic frame materials for efficient microwave absorption[J]. J. Colloid Interface Sci., 2023,648:25-36.

    17. [17]

      Qin Z H, Wang C Y, Ma Y Y, Xia L, Zhong B, Li X J, Zhang P. ZIF-67/GNs derived Co3O4/GNs multilayer flower and porous structure as an efficient electromagnetic wave absorbing material for excellent absorbing properties[J]. Appl. Surf. Sci., 2022,575151789.

    18. [18]

      Yang K, Cui Y H, Liu Z H, Liu P, Zhang Q Y, Zhang B L. Design of core-shell structure NC@MoS2 hierarchical nanotubes as high-performance electromagnetic wave absorber[J]. Chem. Eng. J., 2021,426131308.

    19. [19]

      Xian G Y, Zhang X M, Zhu Z L, Wu C M, Wang Y, Meng Y Y, Liu Y, Liu Z Y, Kong L B. Polyaniline-coated ZIF-67-derived Co/C nano-structures for efficient electromagnetic wave absorption[J]. ACS Appl. Nano Mater., 2023,6(10):8617-8626.

    20. [20]

      Negi P, Kumar A. MoS2 nanoparticle/activated carbon composite as a dual-band material for absorbing microwaves[J]. Nanoscale Adv., 2021,3(14):4196-4206.

    21. [21]

      Wu Y, Tan S J, Fang G, Zang Y Q, Ji G B. Manipulating CNT films with atomic precision for absorption effectiveness-enhanced electromagnetic interference shielding and adaptive infrared camouflage[J]. Adv. Funct. Mater., 20242402193.

    22. [22]

      Li S S, Mo W J, Liu Y, Wang Q. Constructing 3D tent-like frameworks in melamine hybrid foam for superior microwave absorption and thermal insulation[J]. Chem. Eng. J., 2023,454140133.

    23. [23]

      Zhao H H, Xu X Z, Wang Y H, Fan D G, Liu D W, Lin K F, Xu P, Han X J, Du Y C. Heterogeneous interface induced the formation of hierarchically hollow carbon microcubes against electromagnetic pollution[J]. Small, 2020,16(43)2003407.

    24. [24]

      Bai J L, Huang S J, Yao X M, Liu X J, Huang Z R. Surface engineering of nanoflower-like MoS2 decorated porous Si3N4 ceramics for electromagnetic wave absorption[J]. J. Mater. Chem. A, 2023,11(12):6274-6285.

    25. [25]

      Dou Y Y, Zhang X Y, Zhao X B, Li X, Jiang X H, Yan X F, Yu L M. N, O-doped walnut-like porous carbon composite microspheres loaded with Fe/Co nanoparticles for adjustable electromagnetic wave absorption[J]. Small, 2024,202308585.

    26. [26]

      Zhou M, Tan S J, Wang J W, Wu Y, Liang L L, Ji G B. "Three-in-one" multi-scale structural design of carbon fiber-based composites for personal electromagnetic protection and thermal management[J]. Nano-Micro Lett., 2023,176(15):2150-5551.

    27. [27]

      Zhang Z X, Zhang Q, Zhang J T, Wang W L, Sun X N, Sun G X, Han G F, Zhang W B. Synthesis and electromagnetic wave properties of Ti 2.7M0.1T0.2AlC2 (M=Fe, Ni, T=Zr, Mo, W, Ta) powder[J]. J. Alloy. Compd., 2024,978173472.

    28. [28]

      Chen X T, Guo S N, Tan S J, Ma J H, Xu T, Wu Y, Li G G. An environmentally friendly chitosan-derived VO2/carbon aerogel for radar infrared compatible stealth[J]. Carbon, 2023,213118313.

    29. [29]

      Xiang X Y, Yang Z H, Fang G, Tang Y T, Li Y P, Zhang Y J, Kim D H, Liu C Y. Tailoring tactics for optimizing microwave absorbing behaviors in ferrite materials[J]. Mater. Today Phys., 2023,36101184.

    30. [30]

      Zheng T T, Zhang Y, Jia Z R, Zhu J, Wu G L, Yin P F. Customized dielectric-magnetic balance enhanced electromagnetic wave absorption performance in CuxS/CoFe2O4 composites[J]. Chem. Eng. J., 2023,457140876.

    31. [31]

      Lv Y H, Ye X Y, Chen S, Ma L, Zhang L, Liang W K, Wu Y, Wang Q T. Ti3C2Tx/Co-MOF derived TiO2/Co/C composites for broadband and high absorption of electromagnetic wave[J]. Appl. Surf. Sci., 2023,622156935.

  • 加载中
    1. [1]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    2. [2]

      Jun JiangTong GuoWuxin BaiMingliang LiuShujun LiuZhijie QiJingwen SunShugang PanAleksandr L. VasilievZhiyuan MaXin WangJunwu ZhuYongsheng Fu . Modularized sulfur storage achieved by 100% space utilization host for high performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(4): 108565-. doi: 10.1016/j.cclet.2023.108565

    3. [3]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    4. [4]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    5. [5]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . 层状MoS2/Ti3C2Tx异质结光热转换材料用于太阳能驱动水蒸发. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

    6. [6]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    7. [7]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    8. [8]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    9. [9]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    10. [10]

      Xuexia LinYihui ZhouJiafu HongXiaofeng WeiBin LiuChong-Chen Wang . Facile preparation of ZIF-8/ZIF-67-derived biomass carbon composites for highly efficient electromagnetic wave absorption. Chinese Chemical Letters, 2024, 35(9): 109835-. doi: 10.1016/j.cclet.2024.109835

    11. [11]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    12. [12]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    13. [13]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    14. [14]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    15. [15]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    16. [16]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    17. [17]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    18. [18]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    19. [19]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    20. [20]

      Junan PanXinyi LiuHuachao JiYanwei ZhuYanling ZhuangKang ChenNing SunYongqi LiuYunchao LeiKun WangBao ZangLonglu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515

Metrics
  • PDF Downloads(34)
  • Abstract views(1477)
  • HTML views(462)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return