Citation: Huihui LIU, Baichuan ZHAO, Chuanhui WANG, Zhi WANG, Congyun ZHANG. Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059 shu

Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram

Figures(8)

  • Metal-organic framework (MOF) MIL-101 and surface plasmon polariton (SPP) supported gold nanoparticles (Au NPs) hybrid systems were developed as a highly sensitive and reproducible surface-enhanced Raman scattering (SERS) detection platform, in which a green electrostatic self-assembly technology was adopted to construct the substrate. In an aqueous solution, the electronegativity of the particles can be used to prepare the composite substrate without any surface modifier. Due to the enrichment capacity of MIL-101 and the electromagnetic enhancement from Au NPs, the well-designed MIL-101/Au composites possessed ultrahigh sensitivity with the detection limit of Rhodamine 6G (R6G) as low as 10-10 mol·L-1. Meanwhile, the substrate exhibits high stability, excellent reproducibility, and recyclability. Additionally, the novel substrate can be explored for direct capture, and sensitively detect pesticide residues such as thiram.
  • 加载中
    1. [1]

      Bernat A, Samiwala M, Albo J, Jiang X Y, Rao Q C. Challenges in SERS-based pesticide detection and plausible solutions[J]. J. Agric. Food. Chem., 2019,67(45):12341-12347. doi: 10.1021/acs.jafc.9b05077

    2. [2]

      Zhao P N, Liu H Y, Zhang L N, Zhu P H, Ge S G, Yu J H. Paper-based SERS sensing platform based on 3D silver dendrites and molec-ularly imprinted identifier sandwich hybrid for neonicotinoid quantifi-cation[J]. ACS Appl. Mater. Interfaces, 2020,12(7):8845-8854. doi: 10.1021/acsami.9b20341

    3. [3]

      Jin X, Zhu Q Y, Feng L, Li X, Zhu H Y, Miao H Y, Zeng Z F, Shi G. Light-trapping SERS substrate with regular bioinspired arrays for detecting trace dyes[J]. ACS Appl. Mater. Interfaces, 2021,13(9):11535-11542. doi: 10.1021/acsami.1c00702

    4. [4]

      Li G J, Zhang X, Liu T T, Fan H X, Liu H C, Li S Y, Wang D W, Ding L. Dynamic microwave-assisted extraction combined with liquid phase microextraction based on the solidification of a floating drop for the analysis of organochlorine pesticides in grains followed by GC[J]. Food Sci. Human Wellness, 2021,10(3):375-382. doi: 10.1016/j.fshw.2021.02.029

    5. [5]

      Birader K, Kumar P, Tammineni Y, Barla J A, Barla R, Suman P. Col-orimetric aptasensor for on-site detection of oxytetracycline antibiotic in milk[J]. Food Chem., 2021,356129659. doi: 10.1016/j.foodchem.2021.129659

    6. [6]

      Park E, Lee J, Lee J, Lee J, Lee H S, Shin Y, Kim J H. Method for the simultaneous analysis of 300 pesticide residues in hair by LC-MS/MS and GC-MS/MS, and its application to biomonitoring of agricultural workers[J]. Chemosphere, 2021,277130215. doi: 10.1016/j.chemosphere.2021.130215

    7. [7]

      Chen Z J, Wu H L, Xiao Z L, Fu H J, Shen Y D, Luo L, Wang H, Lei H T, Xu Z L. Rational hapten design to produce high-quality antibod-ies against carbamate pesticides and development of immunochro-matographic assays for simultaneous pesticide screening[J]. J. Hazard. Mater., 2021,412125241. doi: 10.1016/j.jhazmat.2021.125241

    8. [8]

      Liebel M, Calderon I, Pazos-Perez N, Hulst N F V, Alvarez-Puebla R A. Widefield SERS for high-throughput nanoparticle screening[J]. Angew. Chem. Int. Ed., 2022,61(20)e202200072. doi: 10.1002/anie.202200072

    9. [9]

      Zhu W Q, Crozier K B. Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering[J]. Nat. Commun., 2014,55228. doi: 10.1038/ncomms6228

    10. [10]

      LIU Y J, YE F, WANG W, ZHANG J H, YAN C, YUAN A H. Fabri-cation of honeycomb-like Ag nanoparticles film used as surface enhanced Raman scattering substrate[J]. Chinese J. Inorg. Chem., 2019,35(10):1861-1868.

    11. [11]

      Langer J, Jimenez de Aberasturi D, Aizpurua J. Present and future of surface-enhanced Raman scattering[J]. ACS Nano, 2019,14(1):28-117.

    12. [12]

      Luo X J, Zhao X J, Wallace G Q, Wallace M H, Wilkinson K J, Wu P, Cai C X, Bazuin C J, Masson J F. Multiplexed SERS detection of microcystins with aptamer-driven core-satellite assemblies[J]. ACS Appl. Mater. Interfaces, 2021,13(5):6545-6556. doi: 10.1021/acsami.0c21493

    13. [13]

      Zhang D J, You H J, Yuan L, Hao R, Li T, Fang J X. Hydrophobic slippery surface-based surface-enhanced Raman spectroscopy plat-form for ultrasensitive detection in food safety applications[J]. Anal. Chem., 2019,91(7):4687-4695. doi: 10.1021/acs.analchem.9b00085

    14. [14]

      Lin J J, Liang L B, Ling X, Zhang S Q, Mao N N, Zhang N, Sumpter B J, Meunier V, Tong L M, Zhang J. Enhanced Raman scattering on in-plane anisotropic layered materials[J]. J. Am. Chem. Soc., 2015,137(49):15511-15517. doi: 10.1021/jacs.5b10144

    15. [15]

      Ding S Y, You E M, Tian Z Q, Moskovits M. Electromagnetic theo-ries of surface-enhanced Raman spectroscopy[J]. Chem. Soc. Rev., 2017,46(13):4042-4076. doi: 10.1039/C7CS00238F

    16. [16]

      LIU X Y, ZHANG D J, ZHANG H J, ZHANG C Y, LIU Y Q. Synthesis of Au@Ag core-shell nanoparticles for sensitive surface-enhanced Raman scattering by precisely adjust its morphology[J]. Chinese J. Inorg. Chem., 2018,34(4):712-718.

    17. [17]

      Zhang K G, Yao S, Li G K, Hu Y L. One-step sonoelectrochemical fabrication of gold nanoparticle/carbon nanosheet hybrids for effi-cient surface-enhanced Raman scattering[J]. Nanoscale, 2015,7(6):2659-2666. doi: 10.1039/C4NR07082H

    18. [18]

      Koh C S L, Sim H Y F, Leong S X, Boong S K, Chong C, Ling X Y. Plasmonic nanoparticle-metal-organic framework (NP-MOF) nanohy-brid platforms for emerging plasmonic applications[J]. ACS Mater. Lett., 2021,3(5):557-573. doi: 10.1021/acsmaterialslett.1c00047

    19. [19]

      Lai H S, Li G K, Xu F G, Zhang Z M. Metal-organic frameworks: Opportunities and challenges for surface-enhanced Raman scatter-ing-A review[J]. J. Mater. Chem. C, 2020,8(9):2952-2963. doi: 10.1039/D0TC00040J

    20. [20]

      Zhang Y, Xue C, Li P, Cui S S, Cui D X, Jin H. Metal-organic frame-work engineered corn-like SERS active Ag@Carbon with controlla-ble spacing distance for tracking trace amount of organic com-pounds[J]. J. Hazard. Mater., 2022,424127686. doi: 10.1016/j.jhazmat.2021.127686

    21. [21]

      Xu Y J, Shi L X, Jing X H, Miao H Y, Zhang Y. SERS-active com-posites with Au-Ag Janus nanoparticles/perovskite in immunoassays for staphylococcus aureus enterotoxins[J]. ACS App.l Mater. Interfaces, 2022,14(2):3293-3301. doi: 10.1021/acsami.1c21063

    22. [22]

      Sun H Z, Cong S, Zheng Z H, Wang Z, Chen Z G, Zhao Z G. Metal-organic frameworks as surface enhanced Raman scattering sub-strates with high tailorability[J]. J. Am. Chem. Soc., 2018,141(2):870-878.

    23. [23]

      Sun H Z, Song G, Lu W B, Cong S, Zhao Z G, Gong W. Stabilizing photo-induced vacancy defects in MOF matrix for high-performance SERS detection[J]. Nano Res, 2022,15(6):5347-5354. doi: 10.1007/s12274-022-4185-x

    24. [24]

      Osterrieth J W M, Wright D, Noh H, Kung C W, Vulpe D, Li A, Park J E, Jimenez D F. Core-shell gold nanorod@zirconium-based metal-organic framework composites as in situ size-selective Raman probes[J]. J. Am. Chem. Soc., 2019,141(9):3893-3900. doi: 10.1021/jacs.8b11300

    25. [25]

      Li J, Liu Z F, Tian D H, Li B J, Shao L, Lou Z Z. Assembly of gold nanorods functionalized by zirconium-based metal-organic frame-works for surface enhanced Raman scattering[J]. Nanoscale, 2022,14(14):5561-5568. doi: 10.1039/D2NR00298A

    26. [26]

      ZHENG L Z, KANG X W, JI Y, ZOU Z J, WANG Y M, CHEN J F. Preparation of Ag/ZIF-90 self-assembled membrane and its high SERS performance[J]. Chinese J. Inorg. Chem., 2015,31(3):465-471.

    27. [27]

      Sun Y, Yu X X, Hu J Y, Zhuang X M, Wang J J, Qiu H X, Ren H T, Zhang S H, Zhang Y S, Hu Y J. Constructing a highly sensitivity SERS sensor based on a magnetic metal-organic framework (MOF) to detect the trace of thiabendazole in fruit juice[J]. ACS Sustain Chem. Eng., 2022,10:8400-8410.

    28. [28]

      Liao J, Wang D M, Liu A Q, Hu Y L, Li G K. Controlled stepwise-synthesis of core-shell Au@MIL-100(Fe) nanoparticles for sensitive surface-enhanced Raman scattering detection[J]. Analyst, 2015,140(24):8165-8171.

    29. [29]

      Cai Y Z, Wu Y P, Xuan T, Guo X Y, Wen Y, Yang H F. Core-shell Au@metal-organic frameworks for promoting Raman detection sensi-tivity of methenamine[J]. ACS Appl. Mater. Interfaces, 2018,10(18):15412-15417.

    30. [30]

      He J C, Dong J W, Hu Y F, Li G K, Hu Y L. Design of Raman tag-bridged core-shell Au@Cu-3(BTC)(2) nanoparticles for Raman imag-ing and synergistic chemo-photothermal therapy[J]. Nanoscale, 2019,11(13):6089-6100.

    31. [31]

      Zheng G C, de Marchi S, Lopez-Puente V, Sentosun K, Sentosun L, Perez-Juste I, Hill E H, Bals S, Liz-Marzán L M, Pastoriza-Santos I, Perez-Juste J. Encapsulation of single plasmonic nanoparticles within ZIF-8 and SERS analysis of the MOF flexibility[J]. Small, 2016,12(29):3935-3943.

    32. [32]

      Jiang P C, Hu Y, Li G K. Biocompatible Au@Ag nanorod@ZIF-8 core-shell nanoparticles for surface-enhanced Raman scattering imaging and drug delivery[J]. Talanta, 2019,200:212-217.

    33. [33]

      Li D, Cao X K, Zhang Q M, Ren X G, Jiang L, Li D W, Deng W, Liu H T. Facile in situ synthesis of core-shell MOF@Ag nanoparticle composites on screen-printed electrodes for ultrasensitive SERS detection of polycyclic aromatic hydrocarbons[J]. J. Mater. Chem. A, 2019,7(23):14108-14117.

    34. [34]

      Zhang P, Liu G Q, Feng S J, Zhou X, Xu W S, Cai W P. Engineering of flexible granular Au nanocap ordered array and its surface en-hanced Raman spectroscopy effect[J]. Nanotechnology, 2020,31(3)035303.

  • 加载中
    1. [1]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    2. [2]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    3. [3]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    4. [4]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    5. [5]

      Shu TianWenxin HuangJunrui HuHuiling WangZhipeng ZhangLiying XuJunrong LiYao Sun . Exploring the frontiers of plant health: Harnessing NIR fluorescence and surface-enhanced Raman scattering modalities for innovative detection. Chinese Chemical Letters, 2025, 36(3): 110336-. doi: 10.1016/j.cclet.2024.110336

    6. [6]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    7. [7]

      Manyu ZhuFei LiangLie WuZihao LiChen WangShule LiuXiue Jiang . Revealing the difference of Stark tuning rate between interface and bulk by surface-enhanced infrared absorption spectroscopy. Chinese Chemical Letters, 2025, 36(2): 109962-. doi: 10.1016/j.cclet.2024.109962

    8. [8]

      Chunhui ZhangJie WangJieyang ZhanRunmin YangGuanggang GaoJiayuan ZhangLinlin FanMengqi WangHong Liu . Highly sensitive hydrazine detection through a novel Raman scattering quenching mechanism enabled by a crystalline and noble metal–free polyoxometalate substrate. Chinese Chemical Letters, 2025, 36(3): 109719-. doi: 10.1016/j.cclet.2024.109719

    9. [9]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    10. [10]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    11. [11]

      Wenlong LiFeishi ShanQingdong BaoQinghua LiHua GaoLeyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060

    12. [12]

      Botao QUQian WANGXiaogang NINGYuxin ZHOURuiping ZHANG . Deeply penetrating photoacoustic imaging in tumor tissues based on dual-targeted melanin nanoparticle. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1025-1032. doi: 10.11862/CJIC.20230416

    13. [13]

      Shenglan ZhouHaijian LiHongyi GaoAng LiTian LiShanshan ChengJingjing WangJitti KasemchainanJianhua YiFengqi ZhaoWengang Qu . Recent advances in metal-loaded MOFs photocatalysts: From single atom, cluster to nanoparticle. Chinese Chemical Letters, 2025, 36(1): 110142-. doi: 10.1016/j.cclet.2024.110142

    14. [14]

      Xueqi ZhangHan GaoJianan XuMin Zhou . Polyelectrolyte-functionalized carbon nanocones enable rapid and accurate analysis of Ag nanoparticle colloids. Chinese Chemical Letters, 2025, 36(4): 110148-. doi: 10.1016/j.cclet.2024.110148

    15. [15]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

    16. [16]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    17. [17]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    18. [18]

      Chang LIUChao ZHANGTongbu LU . Small-size Au nanoparticles anchored on pyrenyl-graphdiyne for N2 electroreduction. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 174-182. doi: 10.11862/CJIC.20240305

    19. [19]

      Yaxuan Jin Chao Zhang Guigang Zhang . Atomically dispersed low-valent Au on poly(heptazine imide) boosts photocatalytic hydroxyl radical production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100414-100414. doi: 10.1016/j.cjsc.2024.100414

    20. [20]

      Yongsheng XuLisha YaoJian LiYanzhao DongDongyang XieMiaomiao ZhangFeng LiYunsheng DaiJinli ZhangHaiyang Zhang . Dual-ligand engineering over Au-based catalyst for efficient acetylene hydrochlorination. Chinese Chemical Letters, 2025, 36(3): 110318-. doi: 10.1016/j.cclet.2024.110318

Metrics
  • PDF Downloads(1)
  • Abstract views(438)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return