Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells
- Corresponding author: Lei WANG, 56218605@qq.com Jianxin LIU, liujx0519@163.com
Citation:
Pingping HAO, Fangfang LI, Yawen WANG, Houfen LI, Xiao ZHANG, Rui LI, Lei WANG, Jianxin LIU. Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells[J]. Chinese Journal of Inorganic Chemistry,
;2024, 40(9): 1811-1824.
doi:
10.11862/CJIC.20240054
Li Y F, Ren N Q, Yang C P, Wang A J, Zadsar M, Li J Z, Hu L J. Molecular characterization and hydrogen production of a new species of anaerobe[J]. J. Environ. Sci. Health, 2005,40:1929-1938. doi: 10.1080/10934520500184483
Ren N, Li J Z, Li B K, Wang Y, Liu S R. Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system[J]. Int. J. Hydrog. Energy, 2006,31:2147-2157. doi: 10.1016/j.ijhydene.2006.02.011
Kapdan I K, Kargi F. Bio-hydrogen production from waste materials[J]. Enzyme Microb. Technol., 2006,38:569-582. doi: 10.1016/j.enzmictec.2005.09.015
Wang J P, Song Y N, Hu J, Li Y, Wang Z Y, Yang P, Wang G, Ma Q, Che Q D, Dai Y, Huang B B. Photocatalytic hydrogen evolution on P-type tetragonal zircon BiVO4[J]. Appl. Catal. B-Environ., 2019,251:94-101. doi: 10.1016/j.apcatb.2019.03.049
Zhang B B, Dong G J, Wang L, Zhang Y J, Ding Y, Bi Y P. Efficient hydrogen production from MIL-53(Fe) catalyst-modified Mo: BiVO4 photoelectrodes[J]. Catal. Sci. Technol., 2017,7:4971-4976. doi: 10.1039/C7CY01765K
Guan X, Zhou Z, Luo P, Wu F S, Dong S J. Effects of preparation method on the hydrolytic hydrogen production performance of Al-rich alloys[J]. J. Alloy. Compd., 2019,796:210-220. doi: 10.1016/j.jallcom.2019.05.053
Logan B E, Call D, Cheng S, Hamelers H V M, Sleutels T H J A, Jeremiasse A W, Rozendal R A. Microbial electrolysis cells for high yield hydrogen gas production from organic matter[J]. Environ. Sci. Technol., 2008,42(23):8630-8640. doi: 10.1021/es801553z
DAI H Y, YANG H M, LIU X, JIAN X, GUO M M, CAO L L, YANG Z H. Preparation of MoS2/graphene composite cathode materials and hydrogen production performance catalyzed by microbial electrolytic cell[J]. Chem. J. Chinese Universities, 2018,39(2):351-358.
Geelhoed J S, Hamelers H V M, Stams A J M. Electricity-mediated biological hydrogen production[J]. Curr. Opin. Microbiol., 2010,13:307-315. doi: 10.1016/j.mib.2010.02.002
Savla N, Guin M, Pandit S, Malik H, Khilari S, Mathuriya A S, Gupta P K, Thapa B S, Bobba R, Jung S P. Recent advancements in the cathodic catalyst for the hydrogen evolution reaction in microbial electrolytic cells[J]. Int. J. Hydrog. Energy, 2022,47:15333-15356. doi: 10.1016/j.ijhydene.2022.03.058
Ivanov I, Ahn Y T, Poirson T, Hickner M A, Logan B E. Comparison of cathode catalyst binders for the hydrogen evolution reaction in microbial electrolysis cells[J]. Int. J. Hydrog. Energy, 2017,42:15739-15744.
Zhang H, Meng G, Wei T R, Ding J Y, Liu Q, Luo J, Liu X J. Co doping promotes the alkaline overall seawater electrolysis performance over MnPSe3 nanosheets[J]. Chem. Commun., 2023,59:12144-12147.
Liu W X, Niu X X, Tang J W, Liu Q, Luo J, Liu X J, Zhou Y T. Energy-efficient anodic reactions for sustainable hydrogen production via water electrolysis[J]. Chem. Synth., 2023,344.
Qin Y J, Cao H J, Liu Q, Yang S Q, Feng X C, Wang H, Lian M L, Zhang D X, Wang H, Luo J, Liu X J. Multi-functional layered double hydroxides supported by nanoporous gold toward overall hydrazine splitting[J]. Front. Chem. Sci. Eng., 2023,18(1)6.
Liu B, Zhao W J, Ding Z J, Verzhbitskiy I, Li L J, Lu J P, Chen J Y, Eda G, Loh K P. Engineering bandgaps of monolayer MoS2 and WS2 on fluoropolymer substrates by electrostatically tuned many-body effects[J]. Adv. Mater., 2016,28(30):6457-6464.
Naylor C H, Kybert N J, Schneier C, Xi J, Romero G, Saven J G, Liu R Y, Johnson A T C. Scalable production of molybdenum disulfide based biosensors[J]. ACS Nano, 2016,10(6):6173-6179.
Hwang J H, Fahad S, Ryu H, Rodriguez K L, Domingo J S, Kushima A, Lee W H. Recycling urine for bioelectrochemical hydrogen production using a MoS2 nano carbon coated electrode in a microbial electrolysis cell[J]. J. Power Sources, 2022,527231209.
Zhou M, Zhang R, Huang M A, Lu W, Song S L, Melancon M P, Tian M, Liang D, Li C. A chelator-free multifunctional[64Cu] CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy[J]. J. Am. Chem. Soc., 2010,132:15351-15358.
Basu M, Sinha A K, Pradhan M, Sarkar S, Negishi Y, Govind , Pal T. Evolution of hierarchical hexagonal stacked plates of CuS from liquid-liquid interface and its photocatalytic application for oxidative degradation of different dyes under indoor lighting[J]. Environ. Sci. Technol., 2010,44:6313-6318.
Chunga J S, Sohnb H J. Electrochemical behaviors of CuS as a cathode material for lithium secondary batteries[J]. J. Power Sources, 2002,108:226-231.
Kim W B, Lee S H, Cho M, Lee Y. Facile and cost-effective CuS dendrite electrode for non-enzymatic glucose sensor[J]. Sensors Actuat. B: Chem., 2017,249:161-167.
Wu X Q, Huang D D, Wu Y P, Zhao J, Liu X, Dong W W, Li S, Li D S, Li J R. In situ synthesis of nano CuS-embedded MOF hierarchical structures and application in dye adsorption and hydrogen evolution reaction[J]. ACS Appl. Energy Mater., 2019,2:5698-5706.
Wang Y C, Chao D L, Wang Z Z, Ni J F, Li L. An energetic CuS-Cu battery system based on CuS nanosheet arrays[J]. ACS Nano, 2021,15:5420-5427.
Liu S Q, Wen H R, Ying G, Zhu Y W, Fu X Z, Sun R, Wong C P. Amorphous Ni(OH)2 encounter with crystalline CuS in hollow spheres: A mesoporous nano-shelled heterostructure for hydrogen evolution electrocatalysis[J]. Nano Energy, 2018,44:7-14.
SHI Q P, CHENG Y Z, HUANG T, SUN Q, XIA B Y. Determination of sodium acetate for sewage treatment by spectrophotometric method[J]. Energy and Environment, 2002,5:78-80.
Dong Z S, Zhao Y, Fan L, Wang Y X, Wang J W, Zhang K. Simultaneous sulfide removal and hydrogen production in a microbial electrolysis cell[J]. Int. J. Electrochem. Sci., 2017,12:10553-10566.
Kim M, Anjum M A R, Choi M, Jeong H Y, Choi S H, Park N, Lee J S. Covalent 0D-2D heterostructuring of Co9S8-MoS2 for enhanced hydrogen evolution in all pH electrolytes[J]. Adv. Funct. Mater., 2020,302002536.
Kim M S, Tran D T, Nguyen T H, Dinh V A, Kim N H, Lee J H. Ni single atoms and Ni phosphate clusters synergistically triggered surface-functionalized MoS2 nanosheets for high-performance freshwater and seawater electrolysis[J]. Energy Environ. Mater., 2022,5:1340-1349.
Zhou Q S, Feng J R, Peng X W, Zhong L X, Sun R C. Porous carbon coupled with an interlaced MoP-MoS2 heterojunction hybrid for efficient hydrogen evolution reaction[J]. J. Energy Chem., 2020,45:45-51.
Zhang X, Jia F F, Song S X. Recent advances in structural engineering of molybdenum disulfide for electrocatalytic hydrogen evolution reaction[J]. Chem. Eng. J., 2021,405127013.
Lu Z Y, Li Y J, Lei X D, Liu J F, Sun X M. Nanoarray based "superaerophobic" surfaces for gas evolution reaction electrodes[J]. Mater. Horiz., 2015,2:294-298.
An L, Huang L, Zhou P P, Yin J, Liu H Y, Xi P X. A self-standing high-performance hydrogen evolution electrode with nanostructured NiCo2O4/CuS heterostructures[J]. Adv. Funct. Mater., 2015,25:6814-6822.
Li F J, Liu W F, Sun Y, Ding W J, Cheng S A. Enhancing hydrogen production with Ni-P coated nickel foam as cathode catalyst in single chamber microbial electrolysis cells[J]. Int. J. Hydrog. Energy, 2017,42:3641-3646.
Liu L, Liu X L, Jiao S L. CuS@defect-rich MoS2 core-shell structure for enhanced hydrogen evolution[J]. J. Colloid Interface Sci., 2020,564:77-87.
Ren X, Wu D, Ge R X, Sun X, Ma H M, Yan T, Zhang Y, Du B, Wei Q, Chen L. Self-supported CoMoS4 nanosheet array as an efficient catalyst for hydrogen evolution reaction at neutral pH[J]. Nano Res., 2018,11:2024-2033.
Liu W Z, Wang A J, Ren N Q, Zhao X Y, Liu L H, Yu Z G, Le D J. Electrochemically assisted biohydrogen production from acetate[J]. Energy Fuel, 2008,22:159-163.
Kiely P D, Cusick R, Call D F, Selembo P A, Regan J M, Logan B E. Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters[J]. Bioresour. Technol., 2011,102:388-394.
Liu W Z, Wang A J, Sun D, Ren N Q, Zhang Y Q, Zhou J Z. Characterization of microbial communities during anode biofilm reformation in a two-chambered microbial electrolysis cell (MEC)[J]. J. Biotechnol., 2012,157:628-632.
Shannon B C E. A mathematical theory of communication[J]. Bell System Technical Journal., 1948,27:379-423.
Shannon B C E. A mathematical theory of communication[J]. Bell System Technical Journal., 1948,27:623-656.
Fykse E M, Aarskaug T, Madslien E H, Dybwad M. Microbial community structure in a full-scale anaerobic treatment plant during start-up and first year of operation revealed by high-throughput 16S rRNA gene amplicon sequencing[J]. Bioresour. Technol., 2016,222:380-387.
Cho S K, Jeong M W, Choi Y K, Shin J, Shin S G. Effects of low-strength ultrasonication on dark fermentative hydrogen production: Start-up performance and microbial community analysis[J]. Appl. Energy, 2018,219:34-41.
Liu Z D, Zhang C, Wang L J, He J W, Li B M, Zhang Y H, Xing X H. Effects of furan derivatives on biohydrogen fermentation from wet steam-exploded cornstalk and its microbial community[J]. Bioresour. Technol., 2015,175:152-159.
Vesga-Baron A, Etchebehere C, Schiappacasse M C, Chamy R, Tapia-Venegas E. Controlled oxidation-reduction potential on dark fermentative hydrogen production from glycerol: Impacts on metabolic pathways and microbial diversity of an acidogenic sludge[J]. Int. J. Hydrog. Energy, 2021,46:5074-5084.
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
Hongliang Zeng , Yuan Ji , Jinfeng Wen , Xu Li , Tingting Zheng , Qiu Jiang , Chuan Xia . Pt nanocluster-catalyzed hydrogen evolution reaction: Recent advances and future outlook. Chinese Chemical Letters, 2025, 36(3): 109686-. doi: 10.1016/j.cclet.2024.109686
Junan Pan , Xinyi Liu , Huachao Ji , Yanwei Zhu , Yanling Zhuang , Kang Chen , Ning Sun , Yongqi Liu , Yunchao Lei , Kun Wang , Bao Zang , Longlu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Lizhang Chen , Yu Fang , Mingxin Pang , Ruoxu Sun , Lin Xu , Qixing Zhou , Yawen Tang . Interfacial engineering of core/satellite-structured RuP/RuP2 heterojunctions for enhanced pH-universal hydrogen evolution reaction. Chinese Journal of Structural Chemistry, 2025, 44(1): 100461-100461. doi: 10.1016/j.cjsc.2024.100461
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
Yongwei ZHANG , Chuang ZHU , Wenbin WU , Yongyong MA , Heng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386
Guoliang Gao , Guangzhen Zhao , Guang Zhu , Bowen Sun , Zixu Sun , Shunli Li , Ya-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557
Chenhao Zhang , Qian Zhang , Yezhou Hu , Hanyu Hu , Junhao Yang , Chang Yang , Ye Zhu , Zhengkai Tu , Deli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429
Minying Wu , Xueliang Fan , Wenbiao Zhang , Bin Chen , Tong Ye , Qian Zhang , Yuanyuan Fang , Yajun Wang , Yi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258
Yaoyin Lou , Xiaoyang Jerry Huang , Kuang-Min Zhao , Mark J. Douthwaite , Tingting Fan , Fa Lu , Ouardia Akdim , Na Tian , Shigang Sun , Graham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300
Bowen Li , Ting Wang , Ming Xu , Yuqi Wang , Zhaoxing Li , Mei Liu , Wenjing Zhang , Ming Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Lian Sun , Honglei Wang , Ming Ma , Tingting Cao , Leilei Zhang , Xingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188
Jiao Li , Chenyang Zhang , Chuhan Wu , Yan Liu , Xuejian Zhang , Xiao Li , Yongtao Li , Jing Sun , Zhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221
Xinlong Zheng , Zhongyun Shao , Jiaxin Lin , Qizhi Gao , Zongxian Ma , Yiming Song , Zhen Chen , Xiaodong Shi , Jing Li , Weifeng Liu , Xinlong Tian , Yuhao Liu . Recent advances of CuSbS2 and CuPbSbS3 as photocatalyst in the application of photocatalytic hydrogen evolution and degradation. Chinese Chemical Letters, 2025, 36(3): 110533-. doi: 10.1016/j.cclet.2024.110533
Inset: the fitted equivalent circuit diagrams.
Δj was the current density difference at 0.687 7 V (vs RHE) in CV.
Dominant biofilm genera (relative abundance >2%) are shown individually, while the rest are grouped as others in b and c.